133
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A practical approach-based technical review on effective utilization of exhaust waste heat from combustion engines

ORCID Icon, , , , , & ORCID Icon show all
Pages 10010-10033 | Received 10 Feb 2023, Accepted 25 Jul 2023, Published online: 01 Aug 2023

References

  • Abas, N., A. R. Kalair, N. Khan, A. Haider, Z. Saleem, and M. S. Saleem. 2018. Natural and synthetic refrigerants, global warming: A review. Renewable and Sustainable Energy Reviews 90:557–69. doi:10.1016/j.rser.2018.03.099.
  • Abdelkareem, M. A., H. M. Maghrabie, E. T. Sayed, E.-C. A. Kais, A. G. Abo-Khalil, M. A. Radi, A. Baroutaji, and A. G. Olabi. 2022. Heat pipe-based waste heat recovery systems: Background and applications. Thermal Science and Engineering Progress 29:101221. doi:http://dx.doi.org/10.1016/j.tsep.2022.101221.
  • Adnan, R., H. H. Masjuki, and T. M. I. Mahlia. 2012. Performance and emission analysis of hydrogen-fueled compression ignition engine with variable water injection timing. Energy 43 (1):416–26. doi:10.1016/j.energy.2012.03.073.
  • Aladayleh, W., and A. Alahmer. 2015. Recovery of exhaust waste heat for ICE using the beta type Stirling engine. Journal of Energy, Article 495418 (8):1–8. doi:10.1155/2015/495418.
  • Altosole, M., G. Benvenuto, U. Campora, M. Laviola, and A. Trucco. 2017. Waste heat recovery from marine gas turbines and diesel engines. Energies 10 (5):718. doi:10.3390/en10050718.
  • Amir, A., J. Miller, and H. Jouhara. 2017. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers. Energy 136:136-163–172. doi:10.1016/j.jaerosci.2012.12.001.
  • António, D., H. Santos, and M. Costa. 2013. Analysis of vehicle exhaust waste heat recovery potential using a rankine cycle. Energy 49:71–85. doi:10.1016/j.energy.2012.11.001.
  • Arabaci, E., Y. İ̇çingür, and Emre Arabaci & Yakup Içingür. 2016. Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine. Journal of the Energy Institute 89 (4):569–77. doi:10.1016/j.joei.2015.06.006.
  • Babatunde, A. F., and O. Oyedepo Sunday. 2018. A review of working fluids for organic rankine cycle (ORC) applications. IOP Conference Series: Materials Science & Engineering 413(1): doi:10.1088/1757-899X/413/1/012019. IOP Publishing.
  • Bahrami, M., F. Pourfayaz, and A. Kasaeian. 2022. Low global warming potential (GWP) working fluids (WFs) for organic rankine cycle (ORC) applications. Energy Reports 8:2976–88. doi:10.1016/j.egyr.2022.01.222.
  • Bao, J., and L. Zhao. 2013. A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews 24:325–42. doi:10.1016/j.rser.2013.03.040.
  • Bari, S., and T. Randhawa. Waste exhaust heat recovery in diesel engine by using optimum design and rankine cycle. No. 2023-01-0944. SAE Technical Paper, 2023. 10.4271/2023-01-0944
  • Bélanger, S., and L. Gosselin. 2012. Multi‐objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery. International Journal of Energy Research 36 (5):632–42. doi:10.1002/er.1820.
  • Bin Mamat, A. M. I., R. F. Martinez-Botas, S. Rajoo, A. Romagnoli, and S. Petrovic. 2015. Waste heat recovery using a novel high-performance low-pressure turbine for electric turbo compounding in downsized gasoline engines: Experimental and computational analysis. Energy 90:218–34. doi:10.1016/j.energy.2015.06.010.
  • Butrymowicz, D., J. Gagan, M. Łukaszuk, K. Śmierciew, A. Pawluczuk, T. Zieliński, and M. Kędzierski. 2021. Experimental validation of new approach for waste heat recovery from combustion engine for cooling and heating demands from combustion engine for maritime applications. Journal of Cleaner Production 290:2021. doi:10.1016/j.jclepro.2020.125206.
  • Cai, H., S. Lijun, L. Yidai, and W. Zeju. 2019. Numerical and experimental study on the influence of top bypass flow on the performance of plate-fin heat exchangers. Applied Thermal Engineering 146:35–63. doi:10.1016/j.applthermaleng.2018.10.007.
  • Chintala, V., S. Kumar, and J. K. Pandey. 2018. A technical review on waste heat recovery from compression ignition engines using organic rankine cycle. Renewable and Sustainable Energy Reviews 81:493–509. doi:10.1016/j.rser.2017.08.016.
  • Christodoulides, Paul. 2022. Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes, and case studies. Energies 15 (1): 384.
  • Ciconkov, R. 2018. Refrigerants: There is still no vision for sustainable solutions. International Journal of Refrigeration 86:441–48. doi:http://dx.doi.org/10.1016/j.ijrefrig.2017.12.006.
  • Conklin, J. C., and J. P. Szybist. 2010. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery. Energy 35 (4):1658–64. doi:10.1016/j.energy.2009.12.012.
  • De Oliveira Neto, R., C. A. R. Sotomonte, and C. J. Coronado. 2021. Off-design model of an ORC system for waste heat recovery of an internal combustion engine. Applied Thermal Engineering 195:117188. doi:10.1016/j.applthermaleng.2021.117188.
  • Desideri, A., B. Dechesne, J. Wronski, M. van den Broek, S. Gusev, V. Lemort, and S. Quoilin. 2016. Comparison of moving boundary and finite-volume heat exchanger models in the Modelica language. Energies 9 (5):33. doi:http://dx.doi.org/10.3390/en9050339.
  • Di Battista, D., F. Fatigati, R. Carapellucci, and R. Cipollone. 2021. An improvement to waste heat recovery in internal combustion engines via combined technologies. Energy Conversion and Management 232:113880. doi:10.1016/j.enconman.2021.113880.
  • Dong, L., A. Mahmoud, and F. Cogswell. 2015. Evaluation of low-GWP for power generation with organic rankine cycle. Energy 85:481–88. Elsevier. doi:10.1016/j.energy.2015.03.109.
  • Dragomir-Stanciu, D. 2018. Improving the energy efficiency of an internal combustion engine cogeneration system using ORC as bottoming cycle. Procedia Manufacturing 22:691–94. doi:10.1016/j.promfg.2018.03.099.
  • Durcansky, P., R. Nosek, and J. Jandacka. 2020. Use of Stirling engine for waste heat recovery. Energies 13 (16):4133. doi:10.3390/en13164133.
  • Enhua, W., Z. Yu, H. Zhang, and F. Yang. 2017. A regenerative supercritical-subcritical dual-loop organic rankine cycle system for energy recovery from the waste heat of internal combustion engines. Applied Energy 190:574–90. doi:10.1016/j.apenergy.2016.12.122.
  • Fang, Y., F. Yang, and H. Zhang. 2019. Comparative analysis and multi-objective optimization of organic rankine cycle (ORC) using pure working fluids and their zeotropic mixtures for diesel engine waste heat recovery. Applied Thermal Engineering 157:2019. doi:10.1016/j.applthermaleng.2019.04.114.
  • Farhat, O., J. Faraj, F. Hachem, C. Castelain, and M. Khaled. 2022. A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations. Cleaner Engineering and Technology 6:100387. doi:https://doi.org/10.1016/j.clet.2021.100387.
  • Fernández-Yáñez, P., O. Armas, R. Kiwan, A. G. Stefanopoulou, and A. L. Boehman. 2018. A thermoelectric generator in exhaust systems of spark-ignition and compression-ignition engines. A comparison with an electric turbo-generator. Applied Energy 229:80–87. doi:10.1016/j.apenergy.2018.07.107.
  • Fernandez-Yanez, P., A. Gómez, R. García-Contreras, and O. Armas. 2018. Evaluating thermoelectric modules in diesel exhaust systems: Potential under urban and extra-urban driving conditions. Journal of Cleaner Production 182:107–79. doi:10.1016/j.jclepro.2018.02.006.
  • Fetuga, I. A., O. T. Olakoyejo, S. M. Abolarin, J. K. Gbegudu, A. Onwuegbusi, and A. O. Adelaja. 2022. Numerical analysis of the thermal performance of waste heat recovery shell and tube heat exchangers on counter-flow with different tube configurations. Alexandria Engineering Journal 64:859–75. doi:10.1016/j.aej.2022.09.017.
  • Francesco, C., C. Perozziello, and B. Maria Vaglieco, ‘‘Analysis of a Stirling engine in a waste heat recovery system with internal combustion engine’’ E3S Web of Conferences 313, 13001 (2021) 19° International Stirling Engine Conference. 10.1051/e3sconf/202131313001
  • Gábor, G., U. K. Deiters, A. Groniewsky, I. Lassu, and A. R. Imre. 2018. Novel classification of pure working fluids for organic rankine cycle. Energy 145:288–300. doi:10.1016/j.energy.2017.12.135.
  • Gequn, S., L. Xiaoning, X. L. HuaTian, H. Wei, X. Wang, and X. Wang. 2014. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic rankine cycle. Applied Energy 119:204–17. doi:10.1016/j.energy.2017.12.135.
  • Giuseppe, B. 2015. Exhaust waste heat recovery in internal combustion engines. Libreria Universiteria Benedetti. doi:10.13140/RG.2.1.4095.7282.
  • Gopalakrishna, S. B., R. Ravi, C. Mangrulkar, K. K. K. Umashankar, and S. K. Vijayalakshmi. 2022. Numerical analysis on performance evaluation of a flat plate louvered fin heat exchanger. Journal of Engineering Science & Technology 17 (3):1867–79.
  • Guo, K., N. Zhang, and R. Smith. 2015. Optimization of fin selection and thermal design of counter-current plate-fin heat exchangers. Applied Thermal Engineering 78:491–99. doi:10.1016/j.applthermaleng.2014.11.071.
  • Gupta, P. R., A. Kumar Tiwari, and Z. Said. 2022. Solar organic Rankine cycle and its poly-generation applications–A review. Sustainable Energy Technologies and Assessments 49:101732. doi:10.1016/j.seta.2021.101732.
  • Gupta, K., K. Suthar, S. K. Jain, G. D. Agarwal, and A. Nayyar. 2018. Design and experimental investigations on six-stroke SI engine using acetylene with water injection. Environmental Science and Pollution Research 25 (23):23033–44. doi:10.1016/j.applthermaleng.2017.07.074.
  • Hao, C., Q. Guo, L. Yang, S. Liu, X. Xie, Z. Chen, and Z. Liu. 2015. A new six stroke single cylinder diesel engine referring Rankine cycle. Energy 87:336-342, ISSN 0360–5442. doi:10.1016/j.energy.2015.04.107.
  • Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. 2014. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Studies in Thermal Engineering 4:53–64. doi:10.1016/j.csite.2014.07.002.
  • Hatami, M., D. D. Gannji, and M. Gorji-Bandpy. 2014. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable and Sustainable Energy Reviews 37:168–81. doi:10.1016/j.rser.2014.05.004.
  • Herath, H. M. D. P., M. A. Wijewardane, R. A. C. P. Ranasinghe, and J. G. A. S. Jayasekera. 2020. Working fluid selection of organic rankine cycles. Energy Reports 6 (Supplement 9):680–86. doi:10.1016/j.egyr.2020.11.150.
  • Hijriawan, M., H. Aries, P. Agung, and Z. Arifin. 2022. Organic Rankine Cycle (ORC) system in renewable and sustainable energy development: A review of the utilization and current conditions for small-scale application. Journal of Applied Engineering Science 20 (3):957–70. doi:10.5937/jaes20-36319.
  • Hongfei, Z., L. Shi, W. Xuan, T. Chen, L. Yurong, H. Tian, and G. Shu. 2022. Hua Tian, Gequn Shu, analysis of printed circuit heat exchanger (PCHE) potential in exhaust waste heat recovery. Applied Thermal Engineering 204 (117863):ISSN 1359–4311. https://arvengtraining.com/en/basics-of-shell-tube-heat-exchangers/:2021.
  • Hua, T., G. Shu, H. Wei, X. Liang, and L. Liu. 2012. Fluids and parameters optimization for the Organic Rankine Cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 47 (1):125–36. doi:10.1016/j.energy.2012.09.021.
  • HuikunCai, L. S., Y. Liao, Liao, Y. ZejuWeng, and Z. Weng. 2019. Numerical and experimental study on the influence of top bypass flow on the performance of plate-fin heat exchanger. Applied Thermal Engineering 146:356–63. doi:10.1016/j.applthermaleng.2018.10.007.
  • Imre, A. R., R. Kustán, and A. Groniewsky. 2019. Thermodynamic selection of the optimal working fluid for organic rankine cycles. Energies 12 (10):2028. http://doi.org/10.3390/en12102028.
  • Ismail, Y., P. Chesse, D. Chalet, and P. Menegazzi. 2015. A methodology for evaluating the turbocompound potential for an automotive engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 229 (14):1878–93. doi:https://doi.org/10.1177/0954407015572709.
  • Jadhao, J. S., and D. G. Thombare. 2018. ‘Review on exhaust gas heat recovery for I.C. Engine’, International Journal of Engineering and Innovative Technology 2:93–100.
  • Jaichandar, S., P. Senthilkumar, and K. Annamalai. 2012. Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 47 (1):388–94. doi:10.1016/j.energy.2012.09.059.
  • Jian, L., X. Peng, Z. Yang, S. Hu, and Y. Duan. 2022. Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review. Applied Energy 311:118609. doi:10.1016/j.apenergy.2022.118609.
  • Khaled, S., and AlQdah. 2011. Performance and evaluation of aqua ammonia auto air conditioner system using exhaust waste energy. Energy Procedia 6:467–76. doi:10.1016/j.egypro.2011.05.054.
  • Leng, L., Z. Ma, J. Cheng, L. Shi, and K. Deng. 2023. Research on exhaust energy distribution regulation for fuel economy improvement of Turbocompound diesel engine. Applied Thermal Engineering 220:119708. doi:10.1016/j.applthermaleng.2022.119708.
  • Loni, R., O. Mahian, G. Najafi, A. Z. Sahin, F. Rajaee, A. Kasaeian, M. Mehrpooya, E. Bellos, and W. G. le Roux. 2021. A critical review of power generation using geothermal-driven organic Rankine cycle. Thermal Science and Engineering Progress 25:101028. doi:10.1016/j.tsep.2021.101028.
  • Macchi, E., and M. Astolfi. 2016. Organic Rankine Cycle (ORC) power systems - technologies and applications. 1st ed. Woodhead Publishing.
  • Mahmoudzadeh Andwari, A., A. Pesiridis, V. Esfahanian, A. Salavati-Zadeh, A. Karvountzis-Kontakiotis, and V. Muralidharan. 2017. A comparative study of the effect of turbocompounding and ORC waste heat recovery systems on the performance of a turbocharged heavy-duty diesel engine. Energies 10 (8):1087. doi:10.3390/en10081087.
  • Martínez, L. C. C., J. A. R. Parise, S. F. Y. Motta, and E. D. C. V. Becerra, “Plate-fin and tube heat exchangers refrigerant circuiting optimization in vapor compression refrigeration systems” (2010). International Refrigeration and Air Conditioning Conference, West Lafayette, United States. Paper 1148.
  • Mastrullo, R., A. W. Mauro, R. Revellin, and L. Viscito. 2015. Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an ORC powered by an internal combustion engine. Energy Conversion and Management 101:697–712. doi:http://dx.doi.org/10.1016/j.enconman.2015.06.012.
  • Min-Hsiung, Y., Rong-HuaYeh, and R.-H. Yeh. 2015. Thermo-economic optimization of an organic rankine cycle system for large marine diesel engine waste heat recovery. Energy 82:256–68. doi:10.1016/j.apenergy.2015.03.083.
  • Mohd Noor, A., R. Che Puteh, S. Rajoo, U. M. Basheer, M. H. Md Sah, and S. H. Shaikh Salleh. 2015, Oct. Simulation study on Electric Turbo-Compound (ETC) for thermal energy recovery in turbocharged internal combustion engine. ( Trans Tech Publications, Ltd.) Applied Mechanics & Materials 799–800:895–901. doi:10.4028/www.scientific.net/AMM.799-800.895.
  • Nandhini, R., B. Sivaprakash, and N. Rajamohan. 2022. Waste heat recovery at low temperature from heat pumps, power cycles, and integrated systems–Review on system performance and environmental perspectives. Sustainable Energy Technologies and Assessments 52:102214. doi:10.1016/j.seta.2022.102214.
  • Nawi, Z. M., S. K. Kamarudin, S. R. Sheikh Abdullah, and S. S. Lam. 2019. The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic Rankine cycle. Energy 166:17–31. doi:10.1590/S0104-66322007000400005.
  • Nematollahi, O., and K. Chun Kim. 2020. Real-gas effects: The state of the art of organic Rankine cycles. Journal of Cleaner Production 277:124102. doi:10.1016/j.jclepro.2020.124102.
  • Nikolaisen, Monika. 2021. System impact of heat exchanger pressure loss in ORCs for smelter off-gas waste heat recovery. Energy 215: 118956.
  • Oumaima, D., R. Ravi, M. Faqir, and E. Essadiqi. 2022. A conceptual framework for waste heat recovery from compression ignition engines: Technologies, working fluids & heat exchangers. Energy Conversion and Management: X 16 (100309):2590–1745. doi:10.1016/j.ecmx.2022.100309.
  • Prashant, D. 2016. Waste heat recovery of IC engine using Stirling engine. P-ISSN 2347 – 5161. International Journal of Current Engineering and Technology 6: 197–200.
  • Qyyum, M. A., A. Khan, S. Ali, M. S. Khurram, N. Mao, A. Naquash, A. A. Noon, T. He, and M. Lee. 2022. Assessment of working fluids, thermal resources and cooling utilities for organic rankine cycles: State-of-the-art comparison, challenges, commercial status, and prospects. Energy Conversion and Management 252:115055. doi:10.1016/j.enconman.2021.115055.
  • Raei, B., F. Shahraki, M. Jamialahmadi, and S. M. Peyghambarzadeh. 2018. Different methods to calculate heat transfer coefficient in a double-tube heat exchanger- a comparative study. Experimental Heat Transfer 31 (1):32–46. doi:10.1080/08916152.2017.1341963.
  • Rajesh, R., 2020, ‘Design, analysis, and fabrication of innovative waste heat recovery system and its impact on emission control in a compression ignition engine’, Ph.D. thesis, faculty of mechanical engineering, ANNA University, Chennai -India. http://hdl.handle.net/10603/345750
  • Rajesh, R., S. Pachamuthu, and P. Kasinathan. 2020. Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger. Energy 200:117489, ISSN 0360–5442. doi:10.1016/j.energy.2020.117489.
  • Rajesh, R., P. Senthilkumar, and K. Mohanraj. 2018. Design of heat exchanger for exhaust heat recovery of a single-cylinder compression ignition engine. Journal of Engineering Science & Technology 13: 2153–65.
  • Rania, Z., A. Allouhi, A. Jamil, and K. Lahrech. 2021. A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery. Case Studies in Thermal Engineering 28:2021. doi:10.1016/j.csite.2021.101608.
  • Ravi, R., and S. Pachamuthu. 2018. Design and development of innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an engine WHR and its impact on exhaust emissions. Energies 11 (10):2717. doi:10.3390/en11102717.
  • Ravi, R., S. Pachamuthu, K. V. Shivaprasad, P. Kasinathan, S. S. Anandan, and J. Sundarababu. 2021. CFD analysis of innovative protracted finned counter-flow heat exchanger for diesel engine exhaust waste heat recovery. AIP Conference Proceedings 2316 (1):030024-1–11. doi:10.1063/5.0036457.
  • Reis Max Mauro, L., and L. R. Gallo Waldyr. 2018. Study of waste heat recovery potential and optimization of the power production by an organic Rankine cycle in an FPSO unit. Energy Conversion and Management 157:409e22. doi:10.1016/j.enconman.2017.12.015.
  • Revesz, A., I. Chaer, J. Thompson, M. Mavroulidou, M. Gunn& Graeme Maidment, and G. Maidment. 2019. Modelling of heat energy recovery potential from underground railways with nearby vertical ground heat exchangers in an urban environment. Applied Thermal Engineering 147:1059–69. doi:10.1016/j.applthermaleng.2018.10.118.
  • Rijpkema, J., S. Andersson, and K. Munch, “Thermodynamic cycle and working fluid selection for waste heat recovery in a heavy-duty diesel engine,” SAE Technical Paper 2018-01-1371, 2018. http://doi.org/10.4271/2018-01-1371
  • Rodriguez, P. 1997. Selection of material for Heat Exchangers. Proceedings of the 3rd International Conference on heat exchangers, boilers and pressure vessels, Alexandria, Egypt 9700196.
  • Roosjen, S., M. Glushenkov, A. Kronberg, and S. Kersten. 2022. Waste heat recovery systems with isobaric expansion technology using pure and mixed working fluids. Energies 15 (14):5265. doi:10.3390/en15145265.
  • Sadik Kakac, H. L. A., and Pramuanjaroenkij. 2012. Heat exchangers: Selection, rating, and thermal design. LLC: Taylors & Francis Group. doi:10.1201/9780429469862.
  • Shah, R. K., S. Kakac, A. E. Bergles, and F. Mayinger. 2003. Hemisphere 1981, heat exchanger design methodology - an overview, in heat exchangers. Thermal-Hydraulic Fundamentals and Design: Washington.
  • Sharifi, K., L. Shirazi, M. Sabeti, M. Rafiei, Shirazi, L. Mohammadi, and H. Amir. 2018. Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger. Applied Thermal Engineering 128:898–910. doi:10.1016/j.applthermaleng.2017.08.146.
  • Shen, G., F. Yuan, Y. Li, and W. Liu. 2019. The energy flow method for modeling and optimization of Organic Rankine Cycle (ORC) systems. Energy Conversion and Management 199:111958. doi:10.1016/j.enconman.2019.111958.
  • Silva, D., A. M. Julio, V. O. B. de Morais, A. Tsolakis, J. Herreros, and E. Torres. 2018. Exergy evaluation and ORC use as an alternative for efficiency improvement in a CI-engine power plant. Sustainable Energy Technologies and Assessments 30:216–23. doi:10.1016/j.seta.2018.10.007.
  • Singh, N., T. Mishra, and R. Banerjee. 2018. ‘Greenhouse gas emissions in india’s road transport sector’, climate change signals and response. Singapore: Springer. doi:10.1007/978-981-13-0280-0_12.
  • Soliman, A. S., S. Zhu, L. Xu, J. Dong, and P. Cheng. 2021. Efficient waste heat recovery system for diesel engines using nano-enhanced phase change materials. Case Studies in Thermal Engineering 28. doi:10.1016/j.csite.2021.101390.
  • Sprouse III, C., and C. Depcik. 2012. Review of organic rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering 51 (1–2):711–22. doi:10.1016/j.applthermaleng.2012.10.017.
  • Suhas, B. G., R. Rajesh, K. M. Chidanand, K. U. Kiran, and K. V. Shivaprasad. 2022. Numerical analysis on performance evaluation of a flat plate louvered fin heat exchanger. Journal Engineering Science Technology 17:1867–79.
  • Talluri, L., O. Dumont, G. Manfrida, V. Lemort, and D. Fiaschi. 2020. Experimental investigation of an organic rankine cycle tesla turbine working with R1233zd(E. Applied Thermal Engineering 174:Article 115293. doi:10.1016/j.applthermaleng.2020.115293.
  • Tchanche, B. F., M. Pétrissans, and G. Papadakis. 2014. Heat resources and organic Rankine cycle machines. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2014.07.139.
  • Teo Sheng Jye, A., A. Pesiridis, and S. Rajoo, “Effects of mechanical turbo compounding on a turbocharged diesel engine,” SAE Technical Paper 2013-01-0103, 2013. http://doi.org/10.4271/2013-01-0103
  • Thurairaja, K., A. Wijewardane, S. Jayasekara, and C. Ranasinghe. 2019. Working fluid selection and performance evaluation of ORC. Energy Procedia 156:244–48. doi:10.1016/j.egypro.2018.11.136.
  • Tianyou, W., Y. Zhang, J. Zhang, Z. Peng, GequnShu, and G. Shu. 2014. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine. Energy Conversion and Management 84:97–107. doi:10.1016/j.enconman.2014.04.022.
  • Tryfon, C. R., S. Chapaloglou, P. Pallis, A.-D. Leontaritis, K. Braimakis, S. Karellas, and P. Vourliotis. 2017. Experimental Investigation and CFD analysis of heat transfer in single phase sub-cooler of a small-scale waste heat recovery ORC. Energy Procedia 129:487–94. doi:10.1016/j.egypro.2017.09.166.
  • Vadivelu, T., L. Ramanujam, R. Ravi, S. K. Vijayalakshmi, and M. Ezhilchandran. 2023. An exploratory study of Direct Injection (DI) diesel engine performance using CNSL—ethanol biodiesel blends with hydrogen. Energies 16 (1):415. doi:10.3390/en16010415.
  • Valencia, G., A. Fontalvo, and J. Duarte Forero. 2021. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: Thermo-economic and environmental footprint analysis. Applied Thermal Engineering 182:116109. doi:10.1016/j.applthermaleng.2020.116109.
  • Vélez, F., J. J. Segovia, M. C. Martín, G. Antolín, F. Chejne, and A. Quijano. 2012. A technical, economical and market review of organic rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews 16 (6):4175–89. doi:10.1016/j.rser.2012.03.022.
  • Vivek, S., R. Ravi, J. Stephen Leon, G. Suresh, M. Selvaraj, K. Manikandan, and C. M. Meenakshi. 2021. Performance evaluation of simple DPHX with helical baffles in annulus side. Journal of Physics Conference Series. 1921 (1):012090. 1921 012090. doi:10.1088/1742-6596/1921/1/012090.
  • Wang, Y., T. Chen, Y. Liang, H. Sun, and Y. Zhu. 2020. A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: Energy, exergy and exergoeconomic analysis. Energy Conversion and Management 204:112321. doi:10.1016/j.enconman.2019.112321.
  • Wang, E. H., H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao, and Q. H. Mu. 2011. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 36 (5):3406–18. doi:10.1016/j.energy.2011.03.041.
  • Wang, E., M. Zhang, F. Meng, and H. Zhang. 2022. Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine. Energy 243:123097. doi:10.1016/j.energy.2021.123097.
  • Wieland, Christoph. 2023. The organic Rankine cycle power systems market: Recent developments and future perspectives. Applied Thermal Engineering 119980.
  • Xiaoya, L., J. Song, Y. Guopeng, Y. Liang, H. Tian, G. Shu, and C. N. Markides. 2019. Organic Rankine cycle systems for engine waste-heat recovery: Heat exchanger design in space-constrained applications. Energy Conversion and Management 199:2019. doi:10.1016/j.enconman.2019.111968.
  • Xuanang, Z., X. Wang, J. Cai, H. Zhaoxian, H. Tian, G. Shu, and L. Shi. 2022. Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery. Energy 244:122681. Part A. doi:10.1016/j.energy.2021.122681.
  • Yang, Z., B. Feng, H. Ma, L. Zhang, C. Duan, B. Liu, Y. Zhang, S. Chen, and Z. Yang. 2021. Analysis of lower GWP and flammable alternative refrigerants. International Journal of Refrigeration 126:12–22. doi:http://dx.doi.org/10.1016/j.ijrefrig.2021.01.022.
  • Zafer, U., and B. Selenay Önal. 2018. Thermodynamic analysis of thermo photovoltaic systems used in waste heat recovery systems: An application. International Journal of Low-Carbon Technologies 13 (1):52–60. doi:10.1093/ijlct/ctx019.
  • Zhang, Z., and L. Li. 2018. Investigation of in-cylinder steam injection in a turbocharged diesel engine for waste heat recovery and NOx emission control. Energies 11 (4):936. doi:https://doi.org/10.3390/en11040936.
  • Zhang, H. G., E. H. Wang, and B. Y. Fan. 2013. Heat transfer analysis of a finned-tube evaporator for an engine exhaust heat recovery. Energy Conversion and Management 65:438–47. doi:10.1016/j.enconman.2012.09.017.
  • Zheng, Z., J. Cao, W. Wu, and M. K. H. Leung. 2022. Parallel and in-series arrangements of zeotropic dual-pressure Organic Rankine Cycle (ORC) for low-grade waste heat recovery. Energy Reports 8:2630–45. doi:10.1016/j.egyr.2022.01.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.