675
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluidisation of Thermochemical Energy Storage Materials: Degradation Assessment

&
Pages 10034-10050 | Received 13 Apr 2023, Accepted 27 Jul 2023, Published online: 07 Aug 2023

References

  • Almendros-Ibáñez, J. A., M. Fernández-Torrijos, M. Díaz-Heras, J. F. Belmonte, and C. Sobrino. 2019. A review of solar thermal energy storage in beds of particles: Packed and fluidized beds. Solar Energy 192:193–237. doi:10.1016/j.solener.2018.05.047.
  • Alva, G., Y. Lin, and G. Fang. 2018. An overview of thermal energy storage systems. Energy 144:341–78. doi:10.1016/j.energy.2017.12.037.
  • Amblard, B., S. Bertholin, C. Bobin, and T. Gauthier. 2015. Development of an attrition evaluation method using a Jet Cup rig. Powder Technology 274:455–65. doi:10.1016/j.powtec.2015.01.001.
  • Aristov, Y. I., and L. G. Gordeeva. Jan 2009. ‘Salt in a porous matrix’ adsorbents: Design of the phase composition and sorption properties. Kinetics and Catalysis 50 (1):65–72. doi: 10.1134/S0023158409010091.
  • A Zondag, H., A. Kalbasenka, and M. Van Essen. 2008. First studies in reactor concepts for thermochemical storage. ECN Energy Resources 3:2244–2250.
  • Baeyens, J., and D. Geldart. 1974. An investigation into slugging fluidized beds. Chemical Engineering Science 29 (1):255–65. doi:10.1016/0009-2509(74)85051-7.
  • Bardy, D. A., C. A. Cruickshank, F. H. Tezel, Y. H. Carrier, and B. Wong. 2020. An experimental investigation of fixed and fluidized beds as adsorbers in compact thermal energy storage systems. Journal of Energy Storage 31:101648. doi:10.1016/j.est.2020.101648.
  • Boland, D., and D. Geldart. Apr 1972. Electrostatic charging in gas fluidised beds. Powder Technology 5 (5):289–97. doi: 10.1016/0032-5910(72)80033-0.
  • Bott, C., I. Dressel, and P. Bayer. Oct 2019. State-of-technology review of water-based closed seasonal thermal energy storage systems. Renewable and Sustainable Energy Reviews 113:109241. doi: 10.1016/j.rser.2019.06.048.
  • Cosquillo Mejia, A., S. Afflerbach, M. Linder, and M. Schmidt. 2022. Development of a moving bed reactor for thermochemical heat storage based on granulated Ca(OH)2. Processes 10 (9):1680. doi:10.3390/pr10091680.
  • Criado, Y. A., A. Huille, S. Rougé, and J. C. Abanades. 2017. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications. Chemical Engineering Journal 313:1194–205. doi:10.1016/j.cej.2016.11.010.
  • Darkwa, K., A. Ianakiev, and P. W. O’Callaghan. 2006. Modelling and simulation of adsorption process in a fluidised bed thermochemical energy reactor. Applied Thermal Engineering 26 (8–9):838–45. doi:10.1016/j.applthermaleng.2005.10.008.
  • EEA, 2022. Air quality in Europe 2022, Report No 05/2022.
  • Goel, V., S. K. Mishra, N. Lodhi, S. Singh, A. Ahlawat, B. Gupta, R. M. Das, and R. K. Kotnala. 2018. Physico-chemical characterization of individual Antarctic particles: Implications to aerosol optics. Atmospheric Environment 192 (July):173–81. doi:10.1016/j.atmosenv.2018.07.046.
  • González-Roubaud, E., D. Pérez-Osorio, and C. Prieto. 2017. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renewable and Sustainable Energy Reviews 80:133–48. doi:10.1016/j.rser.2017.05.084.
  • Han, Z., Yue, J., Wang, C., Zeng, X., Yu, J., Wang, F., Guan, Y., Liu, X., Ding, F., Fu, L., et al. 2020. Characteristics of gas-solid micro fluidized beds for thermochemical reaction analysis. Carbon Resources Conversion 3 (October 2021):203–18. doi:10.1016/j.crcon.2020.12.005.
  • Hongois, S., F. Kuznik, P. Stevens, and J. J. Roux. 2011. Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage. Solar Energy Materials and Solar Cells 95 (7):1831–37. doi:10.1016/j.solmat.2011.01.050.
  • Kerskes, H. 2016. Thermochemical energy storage. In Storing energy: With special reference to renewable energy sources, 345–72. doi: 10.1016/B978-0-12-803440-8.00017-8.
  • Keshavarz, M., M. R. Assari, and H. Basirat Tabrizi. 2022. Numerical and experimental studies of microcapsules phase change material in a pulsating fluidized bed as an energy storage medium. Journal of Building Engineering 58 (August):104956. doi:10.1016/j.jobe.2022.104956.
  • Kunii, D., and O. Levenspiel. 1969. Introduction. In Fluidization engineering, editd by Brenner, Howard, 9. New York, NY: John Wiley and Sons Inc.
  • Ma, Z., H. Bao, and A. P. Roskilly. Mar 2018. Feasibility study of seasonal solar thermal energy storage in domestic dwellings in the UK. Solar Energy 162:489–99. doi: 10.1016/j.solener.2018.01.013.
  • Marie, L. F., S. Landini, D. Bae, V. Francia, and T. S. O. Donovan. 2022. Advances in thermochemical energy storage and fluidised beds for domestic heat. Journal of Energy Storage 53 (December 2021):105242. doi:10.1016/j.est.2022.105242.
  • Marie, L. F., and T. S. O’Donovan. 2022. Fluidised bed reactors for enabling domestic seasonal thermochemical heat fluidised bed reactors for enabling domestic seasonal thermochemical heat storage. 7th World Congress on Momentum, Heat and Mass Transfer 1 (April):168.
  • Miller, C. O., and A. K. Logwinuk. 1951. Fluidization studies of solid particles. Industrial & Engineering Chemistry 43 (5):1220–26. doi:10.1021/ie50497a059.
  • Pardo, P., Z. Anxionnaz-Minvielle, S. Rougé, P. Cognet, and M. Cabassud. 2014. Ca(oh)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Solar Energy 107:605–16. doi:10.1016/j.solener.2014.06.010.
  • Pis, J. J., A. B. Fuertes, V. Artos, A. Suárez, and F. Rubiera. 1991. Attrition of coal ash particles in a fluidized bed. Powder Technology 66 (1):41–46. doi:10.1016/0032-5910(91)80079-X.
  • Revel, J., C. Gatumel, J. A. Dodds, and J. Taillet. 2003. Generation of static electricity during fluidisation of polyethylene and its elimination by air ionisation. Powder Technology 135–136:192–200. doi:10.1016/j.powtec.2003.08.015.
  • Rhodes, M. 2008. Introduction to particle technology. 2nd Ed. doi:10.1002/9780470727102.
  • Sahoo, P., and A. Sahoo. 2013. Fluidization and spouting of fine particles: A comparison. Advances in Materials Science and Engineering 2013:1–7. doi:10.1155/2013/369380.
  • Shukrie, A., S. Anuar, and A. N. Oumer. 2016. Air distributor designs for fluidized bed combustors: A review air distributor designs for fluidized bed combustors: A review. Engineering, Technology & Applied Science Research 6 (3):1029–34. doi:10.48084/etasr.688.
  • Singh, R. I. 2016. Agglomeration in stripper ash coolers and its possible remedial solutions: A case study. Journal of the Institution of Engineers (India): Series C 97 (2):243–55. doi:10.1007/s40032-016-0218-0.
  • Touloumet, Q., G. Postole, L. Massin, C. Lorentz, and A. Auroux. 2022. Investigation of the impact of zeolite shaping and salt deposition on the characteristics and performance of composite thermochemical heat storage systems. Journal of Materials Chemistry A 11 (6):2737–53. doi:10.1039/D2TA07615B.
  • van Alebeek, R., L. Scapino, M. A. J. M. Beving, M. Gaeini, C. C. M. Rindt, and H. A. Zondag. 2018. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair. Applied Thermal Engineering 139:325–33. doi:10.1016/j.applthermaleng.2018.04.092.
  • Van Essen, V. M., Cot Gores, J., Bleijendaal, L. P. J., Zondag, H. A., Schuitema, R., Bakker, M., and van Helden, W. G. J. 2009. Characterization of salt hydrates for compact seasonal thermochemical storage. In Proceedings of the ASME 3rd International Conference on Energy Sustainability 2009, San Francisco, California, USA, ES2009.
  • Wierzbinski, K. R., T. Szymanski, N. Rozwadowska, J. D. Rybka, A. Zimna, T. Zalewski, K. Nowicka-Bauer, A. Malcher, M. Nowaczyk, M. Krupinski et al. 2018. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Scientific Reports 8 (1):1–18. doi:10.1038/s41598-018-22018-0.
  • Wolny, A., and I. Opalinski. Nov 1984. Heat transfer in an electrostatically charged fluidized bed. International Journal of Heat & Mass Transfer 27 (11):2037–45. doi: 10.1016/0017-9310(84)90190-X.
  • Wuerth, M., M. Becker, P. Ostermeier, S. Gleis, and H. Spliethoff. 2019. Development of a continuous fluidized bed reactor for thermochemical energy storage application. Journal of Energy Resources Technology 141 (7). doi:10.1115/1.4043629.
  • Wünsch, D., V. Sulzgruber, M. Haider, and H. Walter. 2020. FP-TES: A fluidisation-based particle thermal energy storage, part I: Numerical investigations and bulk heat conductivity. Energies 13 (17):4298. doi:10.3390/en13174298.
  • Xu, J. X., T. X. Li, J. W. Chao, T. S. Yan, and R. Z. Wang. 2019. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes. Energy 185 (185):1131–42. doi:10.1016/j.energy.2019.07.076.
  • Xu, J., R. Z. Wang, and Y. Li. 2014. A review of available technologies for seasonal thermal energy storage. Solar Energy 103:610–38. doi:10.1016/j.solener.2013.06.006.
  • Zhang, H., J. Baeyens, G. Cáceres, J. Degrève, and Y. Lv. 2016. Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science 53:1–40. doi:10.1016/j.pecs.2015.10.003.
  • Zhang, H., J. Degrève, J. Baeyens, and S. Y. Wu. 2016. Powder attrition in gas fluidized beds. Powder Technology 287:1–11. doi:10.1016/j.powtec.2015.08.052.
  • Zheng, H., X. Liu, Y. Xuan, Y. Ding, and G. Flamant. 2023. Efficient direct solar-driven thermochemical energy storage of (AlMgfemn)o CaCO3 pellets in a fluidized bed reactor. Energy Conversion and Management 285 (April):116990. doi:10.1016/j.enconman.2023.116990.