106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An adaptive serial cascaded autoencoder and LSTM with multivariate regression for ambient air quality prediction with improved flow direction algorithm

, &
Pages 10304-10329 | Received 23 Jun 2022, Accepted 01 Jul 2023, Published online: 10 Aug 2023

References

  • Abirami, S., and P. Chitra. 2022. Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network. Stochastic Environmental Research and Risk Assessment 36 (5):1255–76. doi:10.1007/s00477-021-02153-3.
  • Alkabbani, H., A. Ramadan, Q. Zhu, and A. Elkamel. 2022. An improved air quality index machine learning-based forecasting with multivariate data imputation approach. Atmosphere 13 (7):1144. doi:10.3390/atmos13071144.
  • Bacanin, N., M. Sarac, N. Budimirovic, M. Zivkovic, A. A. AlZubi, and A. K. Bashir. 2022. Smart wireless health care system using graph LSTM pollution prediction and dragonfly node localization. Sustainable Computing: Informatics and Systems 35:100711. doi:10.1016/j.suscom.2022.100711.
  • Benhaddi, M., and J. Ouarzazi. 2021. Multivariate time series forecasting with dilated residual convolutional neural networks for urban air quality prediction. Arabian Journal for Science and Engineering 46 (4):3423–42. doi:10.1007/s13369-020-05109-x.
  • Brammya, G., S. Praveena, N. S. N. Preetha, R. Ramya, B. R. Rajakumar, and D. Binu. 2019. Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm. The Computer Journal. doi:10.1093/comjnl/bxy133.
  • Cao, M., J. Xing, S. K. Sahu, L. Duan, and J. Li. 2022. Accurate prediction of air quality response to emissions for effective control policy design. Journal of Environmental Sciences 123:116–26. doi:10.1016/j.jes.2022.02.009.
  • Chen, J., K. Chen, C. Ding, G. Wang, Q. Liu, and X. Liu. 2020. An adaptive Kalman filtering approach to sensing and predicting air quality index values. IEEE Access 8:4265–72. doi:10.1109/ACCESS.2019.2963416.
  • Chen, H., M. Guan, and H. Li. 2021. Air quality prediction based on integrated dual LSTM model. IEEE Access 9:93285–97. doi:10.1109/ACCESS.2021.3093430.
  • Chen, S., Z. Xu, X. Wang, and C. Zhang. 2022. Ambient air pollutants concentration prediction during the COVID-19: A method based on transfer learning. Knowledge-Based Systems 258:109996. doi:10.1016/j.knosys.2022.109996.
  • Galán-Madruga, D., and J. P. García-Cambero. 2022. An optimized approach for estimating benzene in ambient air within an air quality monitoring network. Journal of Environmental Sciences 111:164–74. doi:10.1016/j.jes.2021.03.005.
  • Gautam, S., A. K. Patra, J. Brema, P. V. Raj, K. Raimond, S. S. Abraham, and K. R. Chudugudu. 2022. Prediction of various sizes of particles in deep opencast copper mine using recurrent neural network: A machine learning approach. Journal of the Institution of Engineers (India): Series A 103 (1):283–94. doi:10.1007/s40030-021-00589-y.
  • Gilik, A., A. S. Ogrenci, and A. Ozmen. 2022. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture. Environmental Science and Pollution Research 29 (8):11920–38. doi:10.1007/s11356-021-16227-w.
  • Gunasekar, S., G. J. R. Kumar, and Y. D. Kumar. 2022. Sustainable optimized LSTM-based intelligent system for air quality prediction in Chennai. Acta Geophysica 70:2889–99. doi:10.1007/s11600-022-00796-6.
  • Han, J., H. Liu, H. Xiong, and J. Yang. 2022. Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network. IEEE Transactions on Knowledge and Data Engineering 35 (5):5230–5243.
  • Huang, Y., Y. Xiang, R. Zhao, and Z. Cheng. 2020. Air quality prediction using improved PSO-BP neural network. IEEE Access 8:99346–53. doi:10.1109/ACCESS.2020.2998145.
  • Huang, Y., J. J.-C. Ying, and V. S. Tseng. 2021. Spatio-attention embedded recurrent neural network for air quality prediction. Knowledge-Based Systems 233:107416. doi:10.1016/j.knosys.2021.107416.
  • Hu, K., X. Guo, X. Gong, X. Wang, J. Liang, and D. Li. 2022. Air quality prediction using spatio-temporal deep learning. Atmospheric Pollution Research 13 (10):101543. doi:10.1016/j.apr.2022.101543.
  • Hyeon, J., C. Jin, and W. Moon. 2022. Integrated artificial neural network prediction model of indoor environmental quality in a school building. Journal of Cleaner Production 344:131083. doi:10.1016/j.jclepro.2022.131083.
  • Ibrir, A., Y. Kerchich, N. Hadidi, H. Merabet, and M. Hentabli. 2021. Prediction of the concentrations of PM1, PM2.5, PM4, and PM10 by using the hybrid dragonfly-SVM algorithm. Air Quality, Atmosphere & Health 14 (3):313–23. doi:10.1007/s11869-020-00936-1.
  • Jain, M., V. Singh, and A. Rani. 2019. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation 44:148–75. doi:10.1016/j.swevo.2018.02.013.
  • Janarthanan, R., P. Partheeban, K. Somasundaram, and P. N. Elamparithi. 2021. A deep learning approach for prediction of air quality index in a metropolitan city. Sustainable Cities and Society 67:67. doi:10.1016/j.scs.2021.102720.
  • Karami, H., M. V. Anaraki, S. Farzin, and S. Mirjalili. 2021. Flow direction algorithm (FDA): A novel optimization approach for solving optimization problems. Computers & Industrial Engineering. 156. doi:10.1016/j.cie.2021.107224.
  • Lakshmipathy, M., M. J. S. Prasad, and G. N. Kodandaramaiah. 2022. Advanced ambient air quality prediction through weighted feature selection and improved reptile searched ensemble learning. Communicated in Knowledge and Information Systems.
  • Madhusmita, R., and S. S. K. Padhy. 2020. Elephant herding optimization for multiprocessor task scheduling in heterogeneous environment. Computational Intelligence in Pattern Recognition 1120:217–29.
  • Mahmoudi, N., A. Majidi, M. Jamei, M. Jalali, S. Maroufpoor, J. Shiri, and Z. M. Yasee. 2022. Mutating fuzzy logic model with various rigorous meta-heuristic algorithms for soil moisture content estimation. Agricultural Water Management 261:107342. doi:10.1016/j.agwat.2021.107342.
  • Mokhtari, I., W. Bechkit, H. Rivano, and M. R. Yaici. 2021. Uncertainty-aware deep learning architectures for highly dynamic air quality prediction. IEEE Access 9:14765–78. doi:10.1109/ACCESS.2021.3052429.
  • Narasimhan, D., and M. Vanitha. 2021. Ambient air quality assessment using ensemble techniques. Soft Computing 25 (15):9943–56. doi:10.1007/s00500-020-05470-x.
  • Sarkar, N., R. Gupta, P. K. Keserwani, and M. C. Govil. 2022. Air quality index prediction using an effective hybrid deep learning model. Environmental Pollution 315:120404. doi:10.1016/j.envpol.2022.120404.
  • Soh, P. W., J. W. Chang, and J. W. Huang. 2018. Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations. IEEE Access 6:38186–99. doi:10.1109/ACCESS.2018.2849820.
  • Sridhar, K., P. Radhakrishnan, G. Swapna, R. Kesavamoorthy, L. Pallavi, and R. Thiagarajan. 2022. A modular IOT sensing platform using hybrid learning ability for air quality prediction. Measurement: Sensors 25:100609. doi:10.1016/j.measen.2022.100609.
  • Sun, X., W. Xu, H. Jiang, and Q. Wang. 2021. A deep multitask learning approach for air quality prediction. Annals of Operations Research 303 (1–2):51–79. doi:10.1007/s10479-020-03734-1.
  • Wang, Y., and T. Kong. 2019. Air quality predictive modeling based on an improved decision tree in a weather-smart grid. IEEE Access 7:172892–901. doi:10.1109/ACCESS.2019.2956599.
  • Wang, J., W. Xu, Y. Zhang, and J. Dong. 2022. A novel air quality prediction and early warning system based on combined model of optimal feature extraction and intelligent optimization. Chaos, Solitons & Fractals 158:112098. doi:10.1016/j.chaos.2022.112098.
  • Xu, X., and M. Yoneda. 2021. Multitask air-quality prediction based on LSTM-Autoencoder model. IEEE Transactions on Cybernetics 51 (5):2577–86. doi:10.1109/TCYB.2019.2945999.
  • Yang, Y., G. Mei, and S. Izzo. 2022a. Revealing influence of meteorological conditions on air quality prediction using explainable deep learning. IEEE Access 10:50755–73. doi:10.1109/ACCESS.2022.3173734.
  • Yang, Y., G. Mei, and S. Izzo. 2022b. Revealing influence of meteorological conditions on air quality prediction using explainable deep learning. IEEE Access 10:50755–73. doi:10.1109/ACCESS.2022.3173734.
  • Zeinalnezhad, M., A. G. Chofreh, F. A. Goni, and J. J. Klemeš. 2020. Air pollution prediction using semi-experimental regression model and adaptive neuro-fuzzy inference system. Journal of Cleaner Production 261:261. doi:10.1016/j.jclepro.2020.121218.
  • Zhang, Y., Y. Wang, M. Gao, Q. Ma, J. Zhao, R. Zhang, Q. Wang, and L. Huang. 2019. A predictive data feature exploration-based air quality prediction approach. IEEE Access 7:30732–43. doi:10.1109/ACCESS.2019.2897754.
  • Zhang, B., H. Zhang, G. Zhao, and J. Lian. 2020. Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks. Environmental Modelling & Software 124:124. doi:10.1016/j.envsoft.2019.104600.
  • Zhao, Z., J. Qin, Z. He, H. Li, Y. Yang, and R. Zhang. 2020. Combining forward with recurrent neural networks for hourly air quality prediction in Northwest of China. Environmental Science, and Pollution Research 27 (23):28931–48. doi:10.1007/s11356-020-08948-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.