105
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Revolutionizing LWR SMR reactors: exploring the potential of (Th-233U-235U)O2 fuel through a parametric study

ORCID Icon, ORCID Icon, , &
Pages 10162-10175 | Received 31 May 2023, Accepted 30 Jul 2023, Published online: 03 Aug 2023

References

  • Akbari-Jeyhouni, R., D. Rezaei Ochbelagh, J. R. Maiorino, F. D’Auria, and G. L. D. Stefani. 2018. The utilization of thorium in small modular reactors – part I: Neutronic assessment. Annals of Nuclear Energy 120:422–30. doi:10.1016/j.anucene.2018.06.013.
  • Alam, S. B., D. Kumar, B. Almutairi, P. K. Bhowmik, C. Goodwin, and G. T. Parks. 2019. Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part I: Assembly-level analysis. Nuclear Engineering & Design 346:157–75. doi:10.1016/j.nucengdes.2019.03.005.
  • Attom, A. M., J. Wang, J. Huang, C. Yan, and M. Ding. 2020. Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors. International Journal of Energy Research 44 (7):5713–29. doi:10.1002/er.5330.
  • Benrhnia, Z., A. Chetaine, O. Kabach, H. Amsil, A. Benchrif, and F. El Banni. 2022. Neutronic and burnup characteristics of potential dual‐cooled annular (Th-233U-235U)O2 fuel for the advanced pressurized water reactors: An assembly‐level analysis. International Journal of Energy Research 1–16. doi:10.1002/er.8648.
  • Benrhnia, Z., O. Kabach, A. Chetaine, and A. Saidi. 2022. Analysis of reactivity control coefficients and the stability of an AP1000 reactor assembly fueled with (Th- 233 U)O2 using DRAGON code. Annals of the University of Craiova, Physics 32:88–102.
  • Cui, D. Y., X. X. Li, S. P. Xia, X. C. Zhao, C. G. Yu, J. G. Chen, and X. Z. Cai. 2018. Possible scenarios for the transition to thorium fuel cycle in molten salt reactor by using enriched uranium. Progress in Nuclear Energy 104:75–84. doi:10.1016/j.pnucene.2017.09.003.
  • du Toit, M. H., and V. V. Naicker. 2018. Neutronic design of homogeneous thorium/uranium fuel for 24 month fuel cycles in the European pressurized reactor using MCNP6. Nuclear Engineering & Design 337 (July):394–405. doi:10.1016/j.nucengdes.2018.07.023.
  • El Banni, F., O. Kabach, A. Boko, B. L. H. Gogon, A. A. Koua, G. A. Monnehan, A. Benchrif, H. Amsil, and A. Chetaine. 2022. Neutronic investigation of a VVER-1200 (Th-233U)O2 fuel assembly with protactinium oxide as a burnable absorber coated on the outer surface of the fuel rods. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):7650–64. doi:10.1080/15567036.2022.2116506.
  • El Kheiri, O., O. Kabach, and A. Chetaine. 2023. Neutronic investigation of prospective dual-cooled micro-heterogeneous duplex fuel for small modular long-life reactors: Assembly level design and analysis. Progress in Nuclear Energy 160:104680. doi:10.1016/j.pnucene.2023.104680.
  • Erfaninia, A., A. Hedayat, and S. M. Mirvakili. 2016. Neutronic study of a new generation of the small modular pressurized water reactor using Monte-Carlo simulation. Progress in Nuclear Energy 93:218–30. doi:10.1016/j.pnucene.2016.08.012.
  • Galahom, A. A., M. Y. M. Mohsen, and N. Amrani. 2021. Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: Neutronic analysis. Nuclear Engineering & Technology 54 (1):1–10. doi:10.1016/j.net.2021.07.019.
  • Hébert, A. 2008. Draglib download page. URL https://www.polymtl.ca/merlin/libraries.htm Accessed October 6 2016
  • Hernandez, R., and N. R. Brown. 2020. Potential fuel cycle performance of floating small modular light water reactors of Russian origin. Annals of Nuclear Energy 144:107555. doi:10.1016/j.anucene.2020.107555.
  • Insulander Björk, K. 2015. Thorium fuels for light water reactors steps towards commercialization. Chalmers University of Technology. https://publications.lib.chalmers.se/records/fulltext/214924/214924.pdf.
  • International Atomic Energy Agency (IAEA). 2006. Status of Innovative Small and medium sized reactor designs 2005. IAEA TECDOC (CD-ROM) No. 1485, IAEA, Vienna. https://www.iaea.org/publications/7450/status-of-innovative-small-and-medium-sized-reactor-designs-2005.
  • Joo, H. K., J. M. Noh, J. W. Yoo, J. Y. Cho, S. Y. Park, and M. H. Chang. 2004. Alternative applications of homogeneous thoria-urania fuel in light water reactors to enhance the economics of the thorium fuel cycle. Nuclear Technology 147 (1):37–52. doi:10.13182/NT03-30.
  • Kabach, O., A. Chetaine, A. Benchrif, H. Amsil, and F. El Banni. 2021. A comparative analysis of the neutronic performance of thorium mixed with uranium or plutonium in a high‐temperature pebble‐bed reactor. International Journal of Energy Research 45 (11):16824–41. doi:10.1002/er.6935.
  • Krall, L. M., A. M. Macfarlane, and R. C. Ewing. 2022. Nuclear waste from small modular reactors. Proceedings of the National Academy of Sciences 119 (23):119. doi:10.1073/pnas.2111833119.
  • Laranjo de Stefani, G., J. M. Losada Moreira, J. R. Maiorino, and P. C. Russo Rossi. 2019. Detailed neutronic calculations of the AP1000 reactor core with the Serpent code. Progress in Nuclear Energy 116:95–107. doi:10.1016/j.pnucene.2019.03.030.
  • Liang, Y., B. Lan, Q. Zhang, M. Seidl, and X. Wang. 2022. Neutronic analysis of silicon carbide Cladding-ATF fuel combinations in small modular reactors. Annals of Nuclear Energy 173:109120. doi:10.1016/j.anucene.2022.109120.
  • Li, J., X. Li, and J. Cai. 2021. Neutronic characteristics and feasibility analysis of micro-heterogeneous duplex ThO2-UO2 fuel pin in PWR. Nuclear Engineering & Design 382:111382. doi:10.1016/j.nucengdes.2021.111382.
  • Lloyd, C. A., T. Roulstone, and R. E. Lyons. 2021. Transport, constructability, and economic advantages of SMR modularization. Progress in Nuclear Energy 134:103672. doi:10.1016/j.pnucene.2021.103672.
  • Marleau, G., A. Hebert, R. Roy, A. Hébert, M. Bonnefoy, P. Delorme, E. E. Mamajek, S. Reffert, L. Stock, and G.-D. Marleau. 2021. A wide-orbit giant planet in the high-mass b Centauri binary system. 600 (7888):231–34. doi:10.1038/s41586-021-04124-8.
  • Peng, M., Y. Liu, Y. Zou, and Y. Dai. 2023. Preliminary design and study of a small modular chlorine salt fast reactor cooled by supercritical carbon dioxide. Energies 16 (13):4862. doi:10.3390/en16134862.
  • Pérez, Y., C. R. García, F. L. Mena, and L. Castro. 2021. Coupled analysis of thorium-based fuels in the high-performance light water reactor fuel assembly. Atom Indones 47 (2):141–50. doi:10.17146/aij.2021.1081.
  • Raj, D., and U. Kannan. 2022. Analysis for the use of thorium based fuel in LWRs. Annals of Nuclear Energy 174:109162. doi:10.1016/j.anucene.2022.109162.
  • Shelley, A., F. Sharmin, B. Dipa, M. H. Ovi, and M. Salahuddin. 2022. Three-stage fuel option for VVER-1200 reactor. Annals of Nuclear Energy 171:109025. doi:10.1016/j.anucene.2022.109025.
  • Stefani, G. L. D., D. M. E. Gonçalves, C. Raitz, M. V. da Silva, and C. J. C. M. R. da Cunha. 2023. Feasibility to Convert the NuScale SMR from UO2 to a Mixed (U, Th)O2 Core: A parametric study of fuel element—seed-blanket concept. World Journal of Nuclear Science and Technology 13 (2):11–28. doi:10.4236/wjnst.2023.132002.
  • Westinghouse Electric Company LLC. 2004. Chapter 4.3 Nuclear Design AP1000. Westinghouse Electric Company. https://www.nrc.gov/docs/ML0507/ML050750282.pdf.
  • Westinghouse Electric Company LLC. 2023. AP300TM small modular reactor. https://www.westinghousenuclear.com/energy-systems/ap300-smr Accessed May 19 2023
  • Carelli, M.D., Ingersoll, D.T. 2015. Woodhead publishing series in energy: Number 64. Handbook of Small Modular Nuclear Reactors.
  • Xu, Z., Y. Otsuka, P. Hejzlar, M. S. Kazimi, and M. J. Driscoll. 2007. High-performance annular fuel reactor physics and fuel management. Nuclear Technology 160 (1):63–79. doi:10.13182/NT07-A3884.
  • Zhiwen, X. 2003. Design strategies for optimization high burn-up fuel in pressurized water reactor reactors. Massachusetts Institute of Technology. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=664d80c04a674f3091c4b337214218a6175a92d8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.