364
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recent advance in attractive pyrometallurgical recovery of electrode materials in spent lithium ion batteries: a review

, , , & ORCID Icon
Pages 10242-10259 | Received 17 Apr 2023, Accepted 30 Jul 2023, Published online: 07 Aug 2023

References

  • Barrios, O., Y. González, L. Barbosa, and P. Orosco. 2022. Chlorination roasting of the cathode material contained in spent lithium-ion batteries to recover lithium, manganese, nickel and cobalt. Minerals Engineering 176:107321. doi:10.1016/j.mineng.2021.107321.
  • Chen, H., and C. Sun. 2023. Recent advances in lithium-rich manganese-based cathodes for high energy density lithium-ion batteries. Chemical Communications 59 (59):9029–55. doi:10.1039/D3CC02195E.
  • Chen, X., Y. Wang, S. Li, Y. Jiang, Y. Cao, and X. Ma. 2022. Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry. Chemical Engineering Journal 434:134542. doi:10.1016/j.cej.2022.134542.
  • Dang, H., Z. Chang, X. Wu, S. Ma, Y. Zhan, N. Li, W. Liu, W. Li, H. Zhou, and C. Sun. 2022. Na2SO4–NaCl binary eutectic salt roasting to enhance extraction of lithium from pyrometallurgical slag of spent lithium-ion batteries. Chinese Journal of Chemical Engineering 41:294–300. doi:10.1016/j.cjche.2021.09.008.
  • Dang, H., B. Wang, Z. Chang, X. Wu, J. Feng, H. Zhou, W. Li, and C. Sun. 2018. Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting. ACS Sustainable Chemistry & Engineering 6 (10):13160–67. doi:10.1021/acssuschemeng.8b02713.
  • Ding, R., S. Tian, K. Zhang, J. Cao, Y. Zheng, W. Tian, X. Wang, L. Wen, L. Wang, and G. Liang. 2021. Recent advances in cathode prelithiation additives and their use in lithium–ion batteries. Journal of Electroanalytical Chemistry 893:115325. doi:10.1016/j.jelechem.2021.115325.
  • Edge, J., S. O’Kane, R. Prosser, N. Kirkaldy, A. Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, et al. 2021. Lithium ion battery degradation: What you need to know. Physical Chemistry Chemical Physics: PCCP 23 (14):8200–21. doi:10.1039/D1CP00359C.
  • Fan, E., L. Li, J. Lin, J. Wu, J. Yang, F. Wu, and R. Chen. 2019. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 7 (19):16144–50. doi:10.1021/acssuschemeng.9b03054.
  • Feng, P., C. Zhang, X. Zhu, X. Yang, G. Zhou, and L. He. 2023. Separation and recovery of cathode materials from spent Li-ion batteries using flotation. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (3):7088–104. doi:10.1080/15567036.2023.2218298.
  • Fu, Y., Y. He, Y. Yang, L. Qu, J. Li, and R. Zhou. 2020. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. Journal of Alloys and Compounds 832:154920. doi:10.1016/j.jallcom.2020.154920.
  • Huang, B., Z. Pan, X. Su, and L. An. 2018. Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources 399:274–86. doi:10.1016/j.jpowsour.2018.07.116.
  • Huang, Z., J. Ruan, Z. Yuan, and R. Qiu. 2018. Characterization of the materials in waste power banks and the green recovery process. ACS Sustainable Chemistry & Engineering 6 (3):3815–22. doi:10.1021/acssuschemeng.7b04175.
  • Hu, J., J. Zhang, H. Li, Y. Chen, and C. Wang. 2017. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources 351:192–99. doi:10.1016/j.jpowsour.2017.03.093.
  • Li, J., Y. Lai, X. Zhu, Q. Liao, A. Xia, Y. Huang, and X. Zhu. 2020. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process. Journal of Hazardous Materials 398:122955. doi:10.1016/j.jhazmat.2020.122955.
  • Li, Y., W. Lv, H. Huang, W. Yan, X. Li, P. Ning, H. Cao, and Z. Sun. 2021. Recycling of spent lithium-ion batteries in view of green chemistry. Green Chemistry: An International Journal and Green Chemistry Resource: GC 23 (17):6139–71. doi:10.1039/D1GC01639C.
  • Lin, J., L. Li, E. Fan, C. Liu, X. Zhang, H. Cao, Z. Sun, and R. Chen. 2020. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Applied Materials and Interfaces 12 (16):18482–89. doi:10.1021/acsami.0c00420.
  • Lin, J., C. Liu, H. Cao, R. Chen, Y. Yang, L. Li, and Z. Sun. 2019. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry: An International Journal and Green Chemistry Resource: GC 21 (21):5904–13. doi:10.1039/C9GC01350D.
  • Liu, J., H. Wang, T. Hu, X. Bai, S. Wang, W. Xie, J. Hao, and Y. He. 2020. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation. Minerals Engineering 148:106223. doi:10.1016/j.mineng.2020.106223.
  • Liu, W., X. Zhong, J. Han, W. Qin, T. Liu, C. Zhao, and Z. Chang. 2018. Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering 7 (1):1289–99. doi:10.1021/acssuschemeng.8b04939.
  • Li, J., G. Wang, and Z. Xu. 2016. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials 302:97–104. doi:10.1016/j.jhazmat.2015.09.050.
  • Lombardo, G., B. Ebin, J. St, M. Foreman, B. Steenari, and M. Petranikova. 2019. Chemical transformations in li-ion battery electrode materials by carbothermic reduction. ACS Sustainable Chemistry & Engineering 7 (16):13668–79. doi:10.1021/acssuschemeng.8b06540.
  • Makuza, B., Q. Tian, X. Guo, K. Chattopadhyay, and D. Yu. 2021. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources 491:229622. doi:10.1016/j.jpowsour.2021.229622.
  • Ma, Y., J. Tang, R. Wanaldi, X. Zhou, H. Wang, C. Zhou, and J. Yang. 2021. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. Journal of Hazardous Materials 402:123491. doi:10.1016/j.jhazmat.2020.123491.
  • Miao, Y., L. Liu, Y. Zhang, Q. Tan, and J. Li. 2022. An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials 425:127900. doi:10.1016/j.jhazmat.2021.127900.
  • Ni, Y., C. Nie, S. Shi, and X. Zhu. 2022. Effect of mechanical force on dissociation characteristics of cathode materials in spent lithium-ion batteries. Process Safety and Environmental Protection 161:374–83. doi:10.1016/j.psep.2022.03.031.
  • Pateriya, R. V., S. Tanwar, and A. L. Sharma. 2023. A critical review on orthosilicate Li2MSiO4 (M=fe, Mn) electrode materials for Li ion batteries. Journal of Physics: Condensed Matter 35 (34):343001. doi:10.1088/1361-648X/acd3cd.
  • Peng, Q., X. Zhu, J. Li, Q. Liao, Y. Lai, L. Zhang, Q. Fu, and X. Zhu. 2021. A novel method for carbon removal and valuable metal recovery by incorporating steam into the reduction-roasting process of spent lithium-ion batteries. Waste Management 134:100–09. doi:10.1016/j.wasman.2021.08.014.
  • Piątek, J., S. Afyon, T. Budnyak, S. Budnyk, M. Sipponen, and A. Slabon. 2020. Sustainable Li-Ion batteries: Chemistry and recycling. Advanced Energy Materials 11 (43):2003456. doi:10.1002/aenm.202003456.
  • Qu, X., H. Xie, X. Chen, Y. Tang, B. Zhang, P. Xing, and H. Yin. 2020. Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: Thermodynamics and reaction mechanisms. ACS Sustainable Chemistry & Engineering 8 (16):6524–32. doi:10.1021/acssuschemeng.0c01205.
  • Qu, X., B. Zhang, J. Zhao, B. Qiu, X. Chen, F. Zhou, X. Li, S. Gao, D. Wang, and H. Yin. 2023. Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: A review. Green Chemistry: An International Journal and Green Chemistry Resource: GC 25 (8):2992–3015. doi:10.1039/D2GC04620B.
  • Ren, G., Xiao, S., Xie, M., Pan, B., Chen, J., Wang, F., Xia, X., 2017. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system. Transactions of Nonferrous Metals Society. 27, 450–456. doi: 10.1002/9781119333197.ch22Wan.
  • Ren, G., Xiao, S., Xie, M., Pan, B., Fan, Y., Wang, F., Xia, X., 2016. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System. Advances in Molten Slags, Fluxes, and Salts. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 211–218. doi: 10.1002/9781119333197.ch22.
  • Sun, L., and K. Qiu. 2011. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials 194:378–84. doi:10.1016/j.jhazmat.2011.07.114.
  • Tang, Y., X. Qu, B. Zhang, Y. Zhao, H. Xie, J. Zhao, Z. Ning, P. Xing, and H. Yin. 2021. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach. Journal of Cleaner Production 279:123633. doi:10.1016/j.jclepro.2020.123633.
  • Tang, Y., B. Zhang, H. Xie, X. Qu, P. Xing, and H. Yin. 2020. Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach. Journal of Power Sources 474:228596. doi:10.1016/j.jpowsour.2020.228596.
  • Tao, R., P. Xing, H. Li, Z. Sun, and Y. Wu. 2022. Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resources Conservation & Recycling 176:105921. doi:10.1016/j.resconrec.2021.105921.
  • Traore, N., and S. Kelebek. 2023. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review. Mineral Processing and Extractive Metallurgy Review 44 (3):231–59. doi:10.1080/08827508.2022.2040497.
  • Vanderbruggen, A., A. Salces, A. Ferreira, M. Rudolph, and R. Serna-Guerrero. 2022. Improving separation efficiency in end-of-life lithium-ion batteries flotation using attrition pre-treatment. Minerals 12 (1):72. doi:10.3390/min12010072.
  • Wang, H., Z. Li, Q. Meng, J. Duan, M. Xu, Y. Lin, and Y. Zhang. 2022. Ammonia leaching of valuable metals from spent lithium ion batteries in NH3-(NH4)2SO4-Na2SO3 system. Hydrometallurgy 208:105809. doi:10.1016/j.hydromet.2021.105809.
  • Wang, D., X. Zhang, H. Chen, and J. Sun. 2018. Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching. Minerals Engineering 126:28–35. doi:10.1016/j.mineng.2018.06.023.
  • Wan, J., J. Lyu, W. Bi, Q. Zhou, P. Li, H. Li, and Y. Li. 2022. Regeneration of spent lithium-ion battery materials. Journal of Energy Storage 51:104470. doi:10.1016/j.est.2022.104470.
  • Xiao, J., R. Gao, B. Niu, and Z. Xu. 2021. Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries. Journal of Hazardous Materials 407:124704. doi:10.1016/j.jhazmat.2020.124704.
  • Xiao, J., J. Li, and Z. Xu. 2017. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials 338:124–31. doi:10.1016/j.jhazmat.2017.05.024.
  • Xiao, J., B. Niu, Q. Song, L. Zhan, and Z. Xu. 2021. Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery. Journal of Hazardous Materials 404:123947. doi:10.1016/j.jhazmat.2020.123947.
  • Xiao, J., B. Niu, and Z. Xu. 2021. Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent. Journal of Hazardous Materials 418:126319. doi:10.1016/j.jhazmat.2021.126319.
  • Xu, P., C. Liu, X. Zhang, X. Zheng, W. Lv, F. Rao, P. Yao, J. Wang, and Z. Sun. 2021. Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 9 (5):2271–79. doi:10.1021/acssuschemeng.0c08213.
  • Yang, Y., G. Huang, S. Xu, Y. He, and X. Liu. 2016. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165:390–96. doi:10.1016/j.hydromet.2015.09.025.
  • Yang, J., Z. Zhang, G. Zhang, L. Jiang, F. Liu, M. Jia, and Y. Lai. 2021. Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries. Hydrometallurgy 203:105638. doi:10.1016/j.hydromet.2021.105638.
  • Yang, J., X. Zhao, W. Li, H. Liang, Z. Gu, Y. Liu, M. Du, and X. Wu. 2022. Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries. eScience 2 (1):95–101. doi:10.1016/j.esci.2021.11.001.
  • Yu, J., Y. He, Z. Ge, H. Li, W. Xie, and S. Wang. 2018. A promising physical method for recovery of LiCoO 2 and graphite from spent lithium-ion batteries: Grinding flotation. Separation and Purification Technology 190:45–52. doi:10.1016/j.seppur.2017.08.049.
  • Yu, J., Y. He, L. Qu, J. Yang, W. Xie, and X. Zhu. 2020. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries. Journal of Cleaner Production 274:123066. doi:10.1016/j.jclepro.2020.123066.
  • Zhang, X., L. Cai, E. Fan, J. Lin, F. Wu, R. Chen, and L. Li. 2021. Recovery valuable metals from spent lithium-ion batteries via a low-temperature roasting approach: Thermodynamics and conversion mechanism. Journal of Hazardous Materials Advances 1:100003. doi:10.1016/j.hazadv.2021.100003.
  • Zhang, G., L. Ding, X. Yuan, Y. He, H. Wang, and J. He. 2021. Recycling of electrode materials from spent lithium-ion battery by pyrolysis-assisted flotation. Journal of Environmental Chemical Engineering 9 (6):10677. doi:10.1016/j.jece.2021.106777.
  • Zhang, J., J. Hu, W. Zhang, Y. Chen, and C. Wang. 2018. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. Journal of Cleaner Production 204:437–46. doi:10.1016/j.jclepro.2018.09.033.
  • Zhang, G., Z. Liu, X. Yuan, Y. He, N. Wei, H. Wang, and B. Zhang. 2022. Recycling of valuable metals from spent cathode material by organic pyrolysis combined with in-situ thermal reduction. Journal of Hazardous Materials 430:128374. doi:10.1016/j.jhazmat.2022.128374.
  • Zhang, Y., W. Wang, Q. Fang, and S. Xu. 2020. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Management 102:847–55. doi:10.1016/j.wasman.2019.11.045.
  • Zhao, Y., B. Liu, L. Zhang, and S. Guo. 2020a. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries. Journal of Hazardous Materials 396:122740. doi:10.1016/j.jhazmat.2020.122740.
  • Zhao, Y., B. Liu, L. Zhang, and S. Guo. 2020b. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. Journal of Hazardous Materials 384:121487. doi:10.1016/j.jhazmat.2019.121487.
  • Zheng, Q., K. Shibazaki, T. Ogawa, and M. Watanabe. 2021. Single-step recovery of divalent Mn component from LiMn2O4 cathode material at hydrothermal conditions as an Mn–citrate complex. ACS Sustainable Chemistry & Engineering 9 (33):10970–76. doi:10.1021/acssuschemeng.1c03459.
  • Zheng, X., Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, and Z. Sun. 2018. A mini-review on metal recycling from spent lithium ion batteries. Engineering 4 (3):361–70. doi:10.1016/j.eng.2018.05.018.
  • Zhong, X., W. Liu, J. Han, F. Jiao, W. Qin, and T. Liu. 2020. Pretreatment for the recovery of spent lithium ion batteries: Theoretical and practical aspects. Journal of Cleaner Production 263:121439. doi:10.1016/j.jclepro.2020.121439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.