149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal energy storage performance of magnesium-based hydrated salts impregnated with activated alumina

ORCID Icon, , , , , , , , & show all
Pages 10487-10504 | Received 02 Nov 2022, Accepted 02 Jun 2023, Published online: 28 Aug 2023

References

  • Ata, U. R., M. S. Zheng, and H. Asif. 2020. Water sorption studies on ZnSO4‐zeolite composite as potential thermochemical heat storage materials. International Journal of Energy Research 44 (1):269–81. doi:10.1002/er.4910.
  • Aydin, D., S. P. Casey, and S. Riffat. 2015. The latest advancements on thermochemical heat storage systems. Renewable & Sustainable Energy Reviews 41:356–67. doi:10.1016/j.rser.2014.08.054.
  • Chao, X., Z. Yu, Y. Xie, Y. Ren, F. Ye, and X. Ju. 2018. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage. Applied Thermal Engineering 129:250–59. doi:10.1016/j.applthermaleng.2017.10.031.
  • Chen, W., W. Li, and Y. Zhang. 2018. Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage. Applied Thermal Engineering 135:95–108. doi:10.1016/j.applthermaleng.2018.02.043.
  • Clark, R. J., and M. Farid. 2021. Hydration reaction kinetics of SrCl2 and SrCl2-cement composite material for thermochemical energy storage. Solar Energy Materials and Solar Cells 231:111311. doi:10.1016/j.solmat.2021.111311.
  • D’Ans, P., E. Courbon, A. Permyakova, F. Nouar, C. Simonnet-Jégat, F. Bourdreux, L. Malet, C. Serre, M. Frère, and N. Steunou. Oct 2019. A new strontium bromide MOF composite with improved performance for solar energy storage application. Journal of Energy Storage 25:100881.1–.18. doi: 10.1016/j.est.2019.100881.
  • Entezari, A., T. S. Ge, and R. Z. Wang. 2018. Water adsorption on the coated aluminum sheets by composite materials (LiCl+libr)/silica gel. Energy 160:64–71. doi:10.1016/j.energy.2018.06.210.
  • Gaeini, M., A. L. Rouws, J. W. O. Salari, H. A. Zondag, and C. C. M. Rindt. 2018. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage. Applied Energy 212:1165–77. doi:10.1016/j.apenergy.2017.12.131.
  • Gaeini, M., H. A. Zondag, and C. C. M. Rindt. 2016. Effect of kinetics on the thermal performance of a sorption heat storage reactor. Applied Thermal Engineering 102:520–31. doi:10.1016/j.applthermaleng.2016.03.055.
  • Hongois, S., F. Kuznik, P. Stevens, and J.-J. Roux. 2011. Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage. Solar Energy Materials and Solar Cells 95 (7):1831–37. doi:10.1016/j.solmat.2011.01.050.
  • Hua, W., H. Yan, X. Zhang, X. Xu, L. Zhang, and Y. Shi. 2022. Review of salt hydrates-based thermochemical adsorption thermal storage technologies. Journal of Energy Storage 56:106158. doi:10.1016/j.est.2022.106158.
  • Jabbari-Hichri, A., S. Bennici, and A. Auroux. 2017. CaCl2-containing composites as thermochemical heat storage materials. Solar Energy Materials and Solar Cells 172:177–85. doi:10.1016/j.solmat.2017.07.037.
  • Kharbanda, J. S., S. K. Yadav, and V. Soni. 2020. Modeling of heat transfer and fluid flow in epsom salt (MgSO4·7H2O) dissociation for thermochemical energy storage. Journal of Energy Storage 31:101712.
  • Li, W., J. J. Klemeš, Q. Wang, and M. Zeng. 2021. Energy storage of low potential heat using lithium hydroxide based sorbent for domestic heat supply. Journal of Cleaner Production 285:124907. doi:10.1016/j.jclepro.2020.124907.
  • Li, W., J. J. Kleme, Q. Wang, and M. Zeng. 2020. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage. Renewable Energy 157:920–40. doi:10.1016/j.renene.2020.05.062.
  • Lin, Y. C., W. Liu, X. J. Zhang, and L. Jiang. 2022. Performance analysis on open thermochemical sorption heat storage from a real mass transfer perspective. Journal of Energy Storage 54:105267. doi:10.1016/j.est.2022.105267.
  • Lin, J., Q. Zhao, H. Huang, H. Mao, Y. Liu, and Y. Xiao. 2021. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review. Solar Energy 214:149–78. doi:10.1016/j.solener.2020.11.055.
  • Liu, H., J. Peng, and K. Yu. 2020. Preparation and heat storage performance of a new composite adsorbent based on activated alumina. Journal of Chemical Engineering 71 (7):3354–61. doi:10.11949/0438-1157.20191537.
  • Li, W., M. Zeng, and Q. Wang. 2020. Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage. Solar Energy Materials and Solar Cells 210:110509. doi:10.1016/j.solmat.2020.110509.
  • Miao, Q., Y. L. Zhang, X. Jia, Z. Li, L. Tan, and Y. Ding. 2021. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage. Solar Energy 220:432–39. doi:10.1016/j.solener.2021.03.008.
  • Padamurthy, A., J. Nandanavanam, and P. Rajagopalan. 2021. Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 2021:1–14. doi:10.1080/15567036.2021.1880502.
  • Palomba, V., A. Sapienza, and Y. Aristov. 2019. Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage. Applied Energy 248:299–309. doi:10.1016/j.apenergy.2019.04.134.
  • Patra, A. K., A. Dutta, and A. Bhaumik. 2012. Self-assembled mesoporous γ-AA spherical nanoparticles and their efficiency for the removal of arsenic from water. Journal of Hazardous Materials 201 (Jan.30):170–77. doi:10.1016/j.jhazmat.2011.11.056.
  • Rehman, A. U., M. Khan, and Z. Maosheng. 2019. Hydration behavior of MgSO4-ZnSO4 composites for long-term thermochemical heat storage application. Journal of Energy Storage 26:101026. doi:10.1016/j.est.2019.101026.
  • Rehman, A. U., M. Z. Shah, A. Ali, T. Zhao, R. Shah, I. Ullah, H. Bilal, A. R. Khan, M. Iqbal, A. Hayat, et al. 2021. Thermochemical heat storage ability of ZnSO 4 · 7H 2 O as potential long-term heat storage material. International Journal of Energy Research. 45(3):4746–54. doi:10.1002/er.6077.
  • Sultan, M., I. I. El-Sharkawy, T. Miyazaki, B. B. Saha, S. Koyama, T. Maruyama, S. Maeda, and T. Nakamura. 2016. Water vapor sorption kinetics of polymer based sorbents: Theory and experiments. Applied Thermal Engineering 106:192–202. doi:10.1016/j.applthermaleng.2016.05.192.
  • Van Essen, V. M., H. A. Zondag, J. Gores, L. P. J. Bleijendaal, M. Bakker, R. Schuitema, W. G. J. van Helden, Z. He, and C. C. M. Rindt. 2009. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. Journal of Solar Energy Engineering 131 (4). doi:10.1115/1.4000275.
  • Whiting, G. T., D. Grondin, D. Stosic, S. Bennici, and A. Auroux. 2014. Zeolite–MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption. Solar Energy Materials and Solar Cells 128:289–95. doi:10.1016/j.solmat.2014.05.016.
  • Wu, H., P. Trens, B. Fraisse, F. Salles, and J. Zajac. 2020. Hydration mechanism in Ce-exchanged zeolites and heat release performances upon adsorption of water vapour in support of their potential use in thermochemical storage of energy under mild conditions of adsorbent regeneration and saturation. Microporous and Mesoporous Materials 296:109999. doi:10.1016/j.micromeso.2020.109999.
  • Xu, S. Z., R. Z. Wang, L. W. Wang, and J. Zhu. 2019. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage. Energy 167:889–901. doi:10.1016/j.energy.2018.10.200.
  • Zhang, X., F. Wang, X. Lei, L. Xudong, W. Yanling, Z. Yeqiang, C. Chuanxiao, and J. Tingxiang. 2021. Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials. Solar Energy Materials and Solar Cells 230:111246. doi:10.1016/j.solmat.2021.111246.
  • Zhang, Y. N., R. Z. Wang, and T. X. Li. 2018. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage. Energy 156:240–49. doi:10.1016/j.energy.2018.05.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.