94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermoeconomic and environmental analyses based single objective optimization of subcooled compression-absorption cascaded refrigeration system using evolutionary techniques

, , &
Pages 10764-10788 | Received 22 Jul 2022, Accepted 22 Nov 2022, Published online: 27 Aug 2023

References

  • Ahmad, S., B. Linnhoff, and R. Smith. Jul 1990. Cost optimum heat exchanger networks—2. targets and design for detailed capital cost models. Computers & Chemical Engineering 14 (7):751–67. doi:10.1016/0098-1354(90)87084-3.
  • Alhendal, Y., A. Gomaa, G. Bedair, and A. Kalendar. 2020. Thermal Performance Analysis of Low-GWP Refrigerants in Automotive Air-Conditioning System. Advances in Materials Science and Engineering 2020:1–14. doi:10.1155/2020/7967812.
  • Avtar, R., S. Tripathi, A. K. Aggarwal, and P. Kumar. Jul 2019. Population–Urbanization–Energy Nexus: A Review. Resources 8 (3):136. doi:10.3390/resources8030136.
  • Baniasad Askari, I., H. Ghazizade-Ahsaee, and A. Kasaeian. 2022 Jun. Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle. Environment Development and Sustainability 1–46. doi:10.1007/S10668-022-02442-Z/TABLES/9.
  • Carvalho, F. N., and P. E. L. Barbieri. 2020 Apr. Thermoeconomic simulation of cascaded and integrated vapour compression-absorption refrigeration systems. Revista de Engenharia Térmica 20(1):93–99. doi: 10.26678/abcm.encit2020.cit20-0224.
  • Chen, E., J. Chen, T. Jia, Y. Zhao, and Y. Dai. 2021 Dec. A solar-assisted hybrid air-cooled adiabatic absorption and vapor compression air conditioning system. Energy Conversion and Management 250:114926. doi:10.1016/J.ENCONMAN.2021.114926.
  • Cheraghalipour, A., M. Hajiaghaei-Keshteli, and M. M. Paydar. 2018 Jun. Tree Growth Algorithm (TGA): A novel approach for solving optimization problems. Engineering Applications of Artificial Intelligence 72:393–414. doi:10.1016/j.engappai.2018.04.021.
  • Cimsit, C. 2018. Thermodynamic analysis of vapour compression- absorption two stage refrigeration cycle. Karaelmas Science & Engineering Journal 8 (1):218–26. Available. http://fbd.beun.edu.tr.
  • Cimsit, C., and I. T. Ozturk. 2012 Jul. Analysis of compression–absorption cascade refrigeration cycles. Applied Thermal Engineering 40:311–17. doi:10.1016/J.APPLTHERMALENG.2012.02.035.
  • Davoodi, V., P. Kazemiani-Najafabadi, and E. Amiri Rad. 2022 Mar. Presenting a power and cascade cooling cycle driven using solar energy and natural gas. Renew Energy 186:802–13. doi:10.1016/J.RENENE.2022.01.031.
  • Fernández-Seara, J., J. Sieres, and M. Vázquez. Apr 2006. Compression-absorption cascade refrigeration system. Applied Thermal Engineering 26 (5–6):502–12. doi:10.1016/J.APPLTHERMALENG.2005.07.015.
  • Gencer Devecioğlu, A., and V. Oruç. 2015. Characteristics of Some New Generation Refrigerants with Low GWP. Energy Procedia 75:1452–57. doi:10.1016/j.egypro.2015.07.258.
  • Gogoi, T. K., and D. Konwar. 2016 Feb. Exergy analysis of a H2O-LiCl absorption refrigeration system with operating temperatures estimated through inverse analysis. Energy Conversion and Management 110:436–47. doi: 10.1016/j.enconman.2015.12.037.
  • Gommed, K., G. Grossman, and F. Ziegler. 2004. Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification. Journal of Solar Energy Engineering 126 (2):710–15. doi:10.1115/1.1643075.
  • He, H., L. Wang, J. Yuan, Z. Wang, W. Fu, and K. Liang. 2019 Dec. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle. Energy Conversion and Management 201:112153. doi: 10.1016/j.enconman.2019.112153.
  • Higa, M., C. de Souza Pereira, T. M. O. A. Cunha, and L. Maximiano. 2022 Jul. Performance analysis of a hybrid compression-assisted absorption system using heat recovery ammonia generator. Applied Thermal Engineering 211:118437. doi: 10.1016/j.applthermaleng.2022.118437.
  • Jain, V., S. S. Kachhwaha, and G. Sachdeva. 2013. Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system. Energy Conversion and Management 75:685–700. doi:10.1016/j.enconman.2013.08.024.
  • Jain, V., G. Sachdeva, and S. S. Kachhwaha. 2015a Nov. Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system. Energy 91:816–32. doi:10.1016/J.ENERGY.2015.08.041.
  • Jain, V., G. Sachdeva, and S. S. Kachhwaha. 2015b Mar. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system. Energy Conversion and Management 93:49–62. doi: 10.1016/J.ENCONMAN.2014.12.095.
  • Jain, V., G. Sachdeva, S. S. Kachhwaha, and B. Patel. 2016. Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique. Energy Conversion and Management 113:230–42. doi:10.1016/j.enconman.2016.01.056.
  • Jianbo, L., L. Kai, H. Xiaolong, Z. Chen, C. Fulin, and K. Xiangqiang. 2020 Feb. A novel absorption–compression combined refrigeration cycle activated by engine waste heat. Energy Conversion and Management 205:112420. doi:10.1016/j.enconman.2019.112420.
  • Jing, Y., Z. Li, L. Liu, S. Lu, and S. Lv. 2018 Jun. Exergoeconomic-optimized design of a solar absorption-subcooled compression hybrid cooling system for use in low-rise buildings. Energy Conversion and Management 165:465–76. doi: 10.1016/j.enconman.2018.03.083.
  • Kadam, S. T., A. S. Kyriakides, M. S. Khan, M. Shehabi, A. I. Papadopoulos, I. Hassan, M. A. Rahman, and P. Seferlis. 2022 Jan. Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling. Energy 243:122991. doi: 10.1016/j.energy.2021.122991.
  • Kairouani, L., and E. Nehdi. Feb 2006. Cooling performance and energy saving of a compression–absorption refrigeration system assisted by geothermal energy. Applied Thermal Engineering 26 (2–3):288–94. doi:10.1016/J.APPLTHERMALENG.2005.05.001.
  • Kizilkan, Ö., A. Şencan, and S. A. Kalogirou. 2007 Dec. Thermoeconomic optimization of a LiBr absorption refrigeration system. Chemical Engineering and Processing: Process Intensification 46(12):1376–84. doi: 10.1016/j.cep.2006.11.007.
  • Kommadath, R., Maharana, D., Sivadurgaprasad, C. and Kotecha, P. 2022. Parallel computing strategies for Sanitized Teaching Learning Based Optimization. Journal of Computational Science 63:101766. doi:10.1016/j.jocs.2022.101766.
  • Li, Z., L. Liu, and Y. Jing. 2017 Jul. Exergoeconomic analysis of solar absorption-subcooled compression hybrid cooling system. Energy Conversion and Management 144:205–16. doi: 10.1016/J.ENCONMAN.2017.04.052.
  • Li, N., C. Luo, and Q. Su. 2018 Feb. A working pair of CaCl2–LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. International Journal of Refrigeration-Revue Internationale Du Froid 86:1–13. doi: 10.1016/J.IJREFRIG.2017.11.004.
  • Longo, G. A., S. Mancin, G. Righetti, and C. Zilio. 2019 Dec. R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. International Journal of Refrigeration-Revue Internationale Du Froid 108:336–46. doi: 10.1016/j.ijrefrig.2019.09.008.
  • Meng, X., D. Zheng, J. Wang, and X. Li. 2013 Sep. Energy saving mechanism analysis of the absorption-compression hybrid refrigeration cycle. Renew Energy 57:43–50. doi: 10.1016/j.renene.2013.01.008.
  • Misra, R. D., P. K. Sahoo, S. Sahoo, and A. Gupta. 2003. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. International Journal of Refrigeration 26 (2):158–69. doi:10.1016/S0140-7007(02)00086-5.
  • Mogaji, T. S., A. Awolala, O. Z. Ayodeji, P. B. Mogaji, and D. E. Philip. Sep 2020. COP enhancement of vapour compression refrigeration system using dedicated mechanical subcooling cycle. Nigerian Journal of Technological 39 (3):776–84. doi:10.4314/njt.v39i3.17.
  • Mousavi, S. A., and M. Mehrpooya. 2020 Feb. A comprehensive exergy-based evaluation on cascade absorption-compression refrigeration system for low temperature applications - exergy, exergoeconomic, and exergoenvironmental assessments. Journal of Cleaner Production 246:119005. doi:10.1016/J.JCLEPRO.2019.119005.
  • Özkaymak, M., H. Kurt, and Z. Recebli. 2008. Thermo-economic optimization of superheating and sub-cooling heat exchangers in vapor-compressed refrigeration system. International Journal of Energy Research 32 (7):634–47. doi:10.1002/er.1381.
  • Pan, M., H. Zhao, D. Liang, Y. Zhu, Y. Liang, and G. Bao. 2020 May. A Review of the Cascade Refrigeration System. Energies 13:2254. http://doi.org/10.3390/en13092254.
  • Patel, B., N. B. Desai, and S. S. Kachhwaha. 2017 Dec. Optimization of waste heat based organic rankine cycle powered cascaded vapor compression-absorption refrigeration system. Energy Conversion and Management 154:576–90. doi: 10.1016/J.ENCONMAN.2017.11.045.
  • Pierezan, J., and L. Dos Santos Coelho. 2018. Coyote optimization algorithm: A new metaheuristic for global optimization problems. Sep. doi:10.1109/CEC.2018.8477769.
  • Pîrlogea, C. 2012 Jan. The human development relies on energy. Panel data evidence. Procedia Economics Financial 3:496–501. doi: 10.1016/s2212-5671(12)00186-4.
  • Punnathanam, V., and P. Kotecha. 2016 Sep. Yin-Yang-pair Optimization: A novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence 54:62–79. doi:10.1016/J.ENGAPPAI.2016.04.004.
  • Rubio-Maya, C., J. J. Pacheco-Ibarra, J. M. Belman-Flores, S. R. Galván-González, and C. Mendoza-Covarrubias. 2012 May. NLP model of a LiBr–H2O absorption refrigeration system for the minimization of the annual operating cost. Applied Thermal Engineering 37:10–18. doi:10.1016/J.APPLTHERMALENG.2011.12.035.
  • Sun, X., Y. Zhuang, L. Liu, Y. Dong, L. Zhang, and J. Du. 2022 Sep. Multi-objective optimization of heat exchange network and thermodynamic cycles integrated system for cooling and power cogeneration. Applied Energy 321:119366. doi: 10.1016/J.APENERGY.2022.119366.
  • Ustaoglu, A. 2020. Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach. Energy 201 (Jun):117491. doi:10.1016/J.ENERGY.2020.117491.
  • Wang, L., A. Ma, Y. Tan, X. Cui, and H. Cui. 2012. Study on solar-assisted cascade refrigeration system. Energy Procedia 16 (PART C):1503–09. doi:10.1016/j.egypro.2012.01.236.
  • Wang, S., L. Zhang, C. Liu, Z. Liu, S. Lan, Q. Li, and X. Wang. 2021. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery. Energy 231:120956. doi:10.1016/j.energy.2021.120956.
  • Wolpert, D. H., and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1 (1):67–82. doi:10.1109/4235.585893.
  • Wu, C., X. Xu, Q. Li, J. Li, S. Wang, and C. Liu. 2020 Mar. Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery. Energy Conversion and Management 207:112527. doi: 10.1016/J.ENCONMAN.2020.112527.
  • Xu, Y., N. Jiang, F. Pan, Q. Wang, Z. Gao, and G. Chen. 2017. Comparative study on two low-grade heat driven absorption-compression refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses. Energy Conversion and Management 133:535–47. doi:10.1016/j.enconman.2016.10.073.
  • Xu, Y., N. Jiang, Q. Wang, and G. Chen. 2016 Aug. Comparative study on the energy performance of two different absorption-compression refrigeration cycles driven by low-grade heat. Applied Thermal Engineering 106:33–41. doi:10.1016/j.applthermaleng.2016.05.169.
  • Xu, Y., Z. Li, H. Chen, and S. Lv. 2020 Nov. Assessment and optimization of solar absorption-subcooled compression hybrid cooling system for cold storage. Applied Thermal Engineering 180:115886. doi:10.1016/j.applthermaleng.2020.115886.
  • Ye, X., L. Liu, and Z. Li. 2019 Mar. Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical city. Front Energy 13(1):185–92. doi: 10.1007/s11708-017-0452-z.
  • Zhao, W., L. Wang, and Z. Zhang. 2019 Jan. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Syst 163:283–304. doi: 10.1016/j.knosys.2018.08.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.