61
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Energy-saving optimization of solar greenhouse walls in severe cold region

, , , , , & show all
Pages 10260-10276 | Received 31 Jan 2023, Accepted 20 Apr 2023, Published online: 07 Aug 2023

References

  • Ahamed, M. S., H. Guo, and K. Tanino. 2019. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosystems Engineering 178:9–33. doi:10.1016/j.biosystemseng.2018.10.017.
  • Ali, H. M. 2022. Phase change materials based thermal energy storage for solar energy systems. Journal of Building Engineering 56:104731. doi:10.1016/j.jobe.2022.104731.
  • Anifantis, A. S., A. Colantoni, and S. Pascuzzi. 2017. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renewable Energy 103:115–27. doi:10.1016/j.renene.2016.11.031.
  • Arıcı, M., F. Bilgin, M. Krajčík, S. Nižetić, and H. Karabay. 2022. Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material. Energy 252:124010. doi:10.1016/j.energy.2022.124010.
  • Cheng, R., K. Q. Yu, and S. X. Wang. 2014. Experimental study of sunlight greenhouse azimuth influenced on plants growth. Journal of Agricultural Mechanization Research 11: 185–87. in Chinese. doi:10.13427/j.cnki.njyi.2014.11.044
  • Chen, C., H. S. Ling, Z. Q. Zhai, Y. Li, F. G. Yang, F. T. Han, and S. Wei. 2018. Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy 216:602–12. doi:10.1016/j.apenergy.2018.02.130.
  • Chen, C., N. Yu, F. G. Yang, K. Mahkamov, F. T. Han, Y. R. Li, and H. S. Ling. 2019. Theoretical and experimental study on selection of physical dimensions of passive solar greenhouses for enhanced energy performance. Solar Energy 191:46–56. doi:10.1016/j.solener.2019.07.089.
  • Climatewatch. Accessed May 3, 2020. https://www.climatewatchdata.org/ghg-emissions/.
  • CN GB 50176. 2016. Code for thermal design of civil buildings. Beijing: China Construction Industry Press. https://www.doc88.com/p-4952877498922.html.
  • CN JGJ 26. 2018. Design standard for energy efficiency of residential buildings in severe cold and cold zones. Profession Standard of the People’s Republic of China. https://www.doc88.com/p-5703930462017.html.
  • CN NY/T 3223. 2018. Code for design of Chinese solar greenhouse. Agricultural industry standards of the People’s Republic of China. https://www.doc88.com/p-4035085718211.html.
  • Cuce, E., D. Harjunowibowo, and P. M. Cuce. 2016. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews 64:34–59. doi:10.1016/j.rser.2016.05.077.
  • Ezzaeri, K., H. Fatnassi, A. Wifaya, A. Bazgaou, A. Aharoune, C. Poncet, A. Bekkaoui, and L. Bouirden. 2020. Performance of photovoltaic canarian greenhouse: A comparison study between summer and winter seasons. Solar Energy 198:275–82. doi:10.1016/j.solener.2020.01.057.
  • Fei, Q. 2019. National greenhouse data system. Accessed June 28, 2020. http://data.sheshiyuanyi.com/AreaData/.
  • Gorjian, S., F. Calise, K. Kant, M. S. Ahamed, B. Copertaro, G. Najafi, X. X. Zhang, M. Aghaei, and R. R. Shamshiri. 2020. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production 124807:124807. doi:10.1016/j.jclepro.2020.124807.
  • Guan, Y., C. Chen, Y. Han, H. Ling, and Q. Yan. 2015. Experimental and modeling analysis of a three layer wall with phase-change thermal storage in a Chinese solar greenhouse. Journal of Building Physics 38 (6):548–59. doi:10.1177/1744259114526350.
  • Guan, Y., T. Wang, R. Tang, W. L. Hu, J. X. Guo, H. J. Yang, Y. Zhang, and S. J. Duan. 2020. Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity. Renewable Energy 150:1047–56. doi:10.1016/j.renene.2019.11.026.
  • Hassanien, R. H. E., M. Li, and Y. Tang. 2018. The evacuated tube solar collector assisted heat pump for heating greenhouses. Energy and Buildings 169:305–18. doi:10.1016/j.enbuild.2018.03.072.
  • Hoang, A. T., A. M. Foley, S. Huang, Z. H. Ong H C, X. P. Nguyen, A. I. Ölçer, V. V. Pham, and X. P. Nguyen. 2022. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. Journal of Cleaner Production 335:131772. doi:10.1016/j.jclepro.2022.131772.
  • Hoang, A. T., V. V. Pham, and X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305:127161. doi:10.1016/j.jclepro.2021.127161.
  • Jiang, W., Z. P. Ju, H. C. Tian, Y. Liu, M. Arıcı, X. Y. Tang, Q. Li, D. Li, and H. B. Qi. 2022. Net-zero energy retrofit of rural house in severe cold region based on passive insulation and BAPV technology. Journal of Cleaner Production 360:132198. doi:10.1016/j.jclepro.2022.132198.
  • Lawag, R. A., and H. M. Ali. 2022. Phase change materials for thermal management and energy storage: A review. Journal of Energy Storage 55:105602. doi:10.1016/j.est.2022.105602.
  • Li, Q., H. Hu, L. Y. Ma, Z. G. Wang, M. Arıcı, D. Li, D. Luo, J. J. Jia, W. Jiang, and H. B. Qi. 2022. Evaluation of energy-saving retrofits for sunspace of rural residential buildings based on orthogonal experiment and entropy weight method. Energy for Sustainable Development 70:569–80. doi:10.1016/j.esd.2022.09.007.
  • Li, Q., L. Y. Ma, D. Li, M. Arıcı, Ç. Yıldız, Z. G. Wang, and Y. Liu. 2021. Thermoeconomic analysis of a wall incorporating phase change material in a rural residence located in northeast China. Sustainable Energy Technologies and Assessments 44:101091. doi:10.1016/j.seta.2021.101091.
  • Ling, H. S., C. Chen, S. Wei, Y. Guan, C. W. Ma, G. Y. Xie, N. Li, and Z. G. Chen. 2015. Effect of phase change materials on indoor thermal environment under different weather conditions and Over a long time. Applied Energy 140:329–37. doi:10.1016/j.apenergy.2014.11.078.
  • Li, D., Y. M. Zheng, C. Y. Liu, and G. Z. Wu. 2015. Numerical analysis on thermal performance of roof contained PCM of a single residential building. Energy Conversion and Management 100:147–56. doi:10.1016/j.enconman.2015.05.014.
  • Ma, M. D., X. Ma, W. G. Cai, and W. Cai. 2019. Carbon-dioxide mitigation in the residential building sector: A household scale-based assessment. Energy Conversion and Management 198:111915. doi:10.1016/j.enconman.2019.111915.
  • McNulty, J. 2017. Solar greenhouses generate electricity and grow crops at the same time, UC Santa 32 Cruz study reveals. UC Santa Cruz Magazine, November 03. 10.7291/D10T0W.
  • Mobtaker, H. G., Y. Ajabshirchi, S. F. Ranjbar, and M. Matloobi. 2019. Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation. Renewable Energy 135:88–97. doi:10.1016/j.renene.2018.10.003.
  • Ogunlowo, Q. O., W. H. Na, A. Rabiu, M. A. Adesanya, T. D. Akpenpuun, H. T. Kim, and H. W. Lee 2022. Effect of envelope characteristics on the accuracy of discretised greenhouse model in TRNSYS. Journal of Agricultural Engineering, LIII, 1420. doi:10.4081/jae.2022.1420.
  • Stanciu, C., D. Stanciu, and A. Dobrovicescu. 2016. Effect of greenhouse orientation with respect to EW axis on its required heating and cooling loads. Energy Procedia 85:498–504. doi:10.1016/j.egypro.2015.12.234.
  • Tiwari, S., J. Bhatti, G. N. Tiwari, and I. M. Al-Helal. 2016. Thermal modelling of photovoltaic thermal (PVT) integrated greenhouse system for biogas heating. Solar Energy 136:639–49. doi:10.1016/j.solener.2016.07.048.
  • Xu, W., W. Song, and C. Ma. 2020. Performance of a water-circulating solar heat collection and release system for greenhouse heating using an indoor collector constructed of hollow polycarbonate sheets. Journal of Cleaner Production 253:119918. doi:10.1016/j.jclepro.2019.119918.
  • Yang, R. T., D. Li, M. Arıcı, B. C. Wang, Y. Y. Wu, Y. X. Ma, and X. P. Yang. 2023. Photothermal performance of plastic greenhouse embedded with phase change materials in translucent envelopes: A dynamic experimental study. Journal of Energy Storage 58:106375. doi:10.1016/j.est.2022.106375.
  • Zhang, S. H., Y. Guo, H. J. Zhao, Y. Wang, D. Chow, and Y. Fang. 2020. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. Journal of Cleaner Production 273:122695. doi:10.1016/j.jclepro.2020.122695.
  • Zhang, X., H. L. Wang, Z. R. Zou, and S. J. Wang. 2016. CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering 142:12–26. doi:10.1016/j.biosystemseng.2015.11.006.
  • Zhang, L., P. Xu, J. C. Mao, X. Tang, Z. W. Li, and J. G. Shi. 2015. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy 156:213–22. doi:10.1016/j.apenergy.2015.07.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.