91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of a green zeolite/bacterial cellulose nanocomposite membrane as a catalyst to produce biodiesel from waste cooking oil

, , , , &
Pages 10350-10365 | Received 31 Jan 2023, Accepted 30 Jul 2023, Published online: 13 Aug 2023

References

  • Abd El‑Wahab, R. M., S. M. Fadel, A. M. Abdel‑Karim, S. M. Eloui, and M. L. Hassan. 1927. Novel green flexible rice straw nanofibers/zinc oxide nanoparticles films with electrical properties. Scientific Reports 13 (2023). doi:10.1038/s41598-023-28999-x.
  • Abd El-Wahab, R. M., D. M. El-Mekkawi, S. Hassan, and M. Selim. 2014. Single step solid combustion route for preparing nanosized NiO. Egyptian Journal of Chemistry 57 (3):199–214. doi:10.21608/EJCHEM.2014.1041.
  • Andreo-Martinez, P., V. M. Ortiz-Martinez, N. Garcia-Martinez, A. P. de Los Rios, F. J. Hernandez-Fernandez, and J. Quesada-Medina. 2020. Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Applied Energy 264:114753. doi:10.1016/j.apenergy.2020.114753.
  • Chattopadhyay, S., S. Das, and R. Sen. 2011. Rapid and precise estimation of biodiesel by high performance thin layer chromatography. Applied Energy 88 (12):5188–92. doi:10.1016/j.apenergy.2011.07.027.
  • Chen, C., G. Wang, and X. Xu. 2021. Preparation of zeolite-cellulose composites for water disinfection. Journal of Porous Materials 28 (5):1459–68. doi:10.1007/s10934-021-01096-y.
  • Dang, T. H., B. H. Chen, and D. J. Lee. 2017. Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay. Journal of the Taiwan Institute of Chemical Engineers 79:14–22. doi:10.1016/j.jtice.2017.03.009.
  • Delmer, D. P. 1999. Cellulose biosynthesis: Exciting times for a difficult field of study. Annual Review of Plant Biology 50 (1):245–76. doi:10.1146/annurev.arplant.50.1.245.
  • Du, L., S. Ding, Z. Li, E. Lv, J. Lu, and J. Ding. 2018. Transesterification of castor oil to biodiesel using NaY zeolite-supported La2O3 catalysts. Energy Conversion and Management 173:728–34. doi:10.1016/j.enconman.2018.07.053.
  • El-Gendy, D. M., R. M. Abd El Wahab, M. M. Selim, and N. K. Allam. 2020. A facile synthesis of zeolitic analcime/spongy graphene nanocomposites as novel hybrid electrodes for symmetric supercapacitors. Journal of Energy Storage 32:101953. doi:10.1016/j.est.2020.101953.
  • Gardy, J., A. Osatiashtiani, O. Céspedes, A. Hassanpour, X. Lai, A. F. Lee, K. Wilson, and M. Rehan. 2018. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 234:268–78. doi:10.1016/j.apcatb.2018.04.046.
  • Helal, S. E., H. M. Abdelhady, K. A. Abou-Taleb, M. G. Hassan, and M. M. Amer. 2021. Lipase from Rhizopus oryzae R1: In-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering & Biotechnology 19 (1):1–13. doi:10.1186/s43141-020-00094-y.
  • Helmi, M., and A. Hemmati. 2021. Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies. Energy Conversion and Management 248:114807. doi:10.1016/j.enconman.2021.114807.
  • Helwani, Z., M. R. Othman, N. Aziz, J. Kim, and W. J. N. Fernando. 2009. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A, General 363 (1–2):1–10. doi:10.1016/j.apcata.2009.05.021.
  • Hu, X., B. Yang, M. Hao, Z. Chen, Y. Liu, S. Ramakrishna, X. Wang, and J. Yao. 2023. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydrate Polymers 305:120538. doi:10.1016/j.carbpol.2023.120538.
  • Ibrahim, S. M. A., K. A. Abed, and M. S. G. H. M. Abu Hashis. 2023. A semi-industrial reactor for producing biodiesel from waste cooking oil. Biofuels 14 (4):393–403. doi:10.1080/17597269.2022.2145758.
  • Ibrahim, S. M., A. F. Ghanem, D. H. Sheir, and A. A. Badawy. 2022. Effective single and contest carcinogenic dyes adsorption onto A-zeolite/bacterial cellulose composite membrane: Adsorption isotherms, kinetics, and thermodynamics. Journal of Environmental Chemical Engineering 10 (6):108588. doi:10.1016/j.jece.2022.108588.
  • Ismail, S. A. E. A., and R. F. M. Ali. 2015. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents. Science and Technology of Advanced Materials 16 (3):034602. doi:10.1088/1468-6996/16/3/034602.
  • Jayakumar, M., N. Karmegam, M. P. Gundupalli, K. B. Gebeyehu, B. T. Asfaw, S. W. Chang, B. Ravindran, and M. K. Awasthi. 2021. Heterogeneous base catalysts: Synthesis and application for biodiesel production–A review. Bioresource Technology 331:125054. doi:10.1016/j.biortech.2021.125054.
  • Jume, B. H., M. A. Gabris, H. R. Nodeh, S. Rezania, and J. Cho. 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renewable Energy 162:2182–89. doi:10.1016/j.renene.2020.10.046.
  • Kamel, S., and T. A. Khattab. 2021. Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. Cellulose 28 (8):4545–74. doi:10.1007/s10570-021-03839-1.
  • Lamaisri, C., V. Punsuvon, S. Chanprame, A. Arunyanark, P. Srinives, and P. Liangsakul. 2015. Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin Journal of Science and Technology 37:389–95.
  • Lawan, I., Z. N. Garba, W. Zhou, M. Zhang, and Z. Yuan. 2020. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production. Renewable Energy 145:2550–60. doi:10.1016/j.renene.2019.08.008.
  • Li, Z., S. Ding, C. Chen, S. Qu, L. Du, J. Lu, and J. Ding. 2019. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study. Energy Conversion and Management 192:335–45. doi:10.1016/j.enconman.2019.04.053.
  • Maleki, B., B. Singh, H. Eamaeili, Y. K. Venkatesh, S. S. A. Talesh, and S. Seetharaman. 2023. Transesterification of waste cooking oil to biodiesel by walnut shell/sawdust as a novel, low-cost and green heterogeneous catalyst: Optimization via RSM and ANN. Industrial Crops and Products 193:116261. doi:10.1016/j.indcrop.2023.116261.
  • McNeil, S. E., ed. 2011. Characterization of nanoparticles intended for drug delivery, Vol. 697, 71–82. New York, NY: Humana press.
  • Munir, M., M. Saeed, M. Ahmad, A. Waseem, S. Sultana, M. Zafar, and G. R. Srinivasan. 2022. Optimization of novel Lepidium perfoliatum Linn. Biodiesel using zirconium-modified montmorillonite clay catalyst. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):6632–47. doi:10.1080/15567036.2019.1691289.
  • Narowska, B., M. Kulazynski, M. Lukaszewicz, and E. Burchacka. 2019. Use of activated carbons as catalyst supports for biodiesel production. Renewable Energy 135:176–85. doi:10.1016/j.renene.2018.11.006.
  • Navya, P. V., V. Gayathri, D. Samanta, and S. Sampath. 2022. Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules 220:435–61. doi:10.1016/j.ijbiomac.2022.08.056.
  • Patterson, A. L. 1939. The Scherrer formula for X-ray particle size determination. Physical Review 56 (10):978–82. doi:10.1103/PhysRev.56.978.
  • Peiravi-Rivash, O., M. Mashreghi, O. Baigenzhenov, and A. Hosseini-Bandegharaei. 2023. Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 656:130355. doi:10.1016/j.colsurfa.2022.130355.
  • Szkudlarek, L., K. Chałupka, W. Maniukiewicz, J. Albinska, M. I. Szynkowska-Jozwik, and P. Mierczynski. 2021. The influence of Si/Al Ratio on the physicochemical and catalytic properties of MgO/ZSM-5 catalyst in transesterification reaction of rapeseed oil. Catalysts 11 (11):1260. doi:10.3390/catal11111260.
  • Tang, J., S. Bi, X. Xin, G. Hou, X. Su, C. Liu, Y. Lin, and H. Li. 2019. Excellent microwave absorption of carbon black/reduced graphene oxide composite with low loading. Journal of Materials Science 54 (22):13990–4001. doi:10.1007/s10853-019-03902-0.
  • Thangaraj, B., P. R. Solomon, B. Muniyandi, S. Ranganathan, and L. Lin. 2019. Catalysis in biodiesel production—a review. Clean Energy 3 (1):2–23. doi:10.1093/ce/zky020.
  • Tsouko, E., C. Kourmentza, D. Ladakis, N. Kopsahelis, I. Mandala, S. Papanikolaou, F. Paloukis, V. Alves, and A. Koutinas. 2015. Bacterial cellulose production from industrial waste and by-product streams. International Journal of Molecular Sciences 16 (7):14832–49. doi:10.3390/ijms160714832.
  • Tyson, S. K. 2001. Biodiesel handling and use guidelines. NREL, Golden, Colorado: National Renewable Energy Laboratory.
  • Wang, Y. Y., and B. H. Chen. 2016. High-silica zeolite beta as a heterogeneous catalyst in transesterification of triolein for biodiesel production. Catalysis Today 278:335–43. doi:10.1016/j.cattod.2016.03.012.
  • Wang, Y. Y., H. Y. Chou, B. H. Chen, and D. J. Lee. 2013. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol. Bioresource Technology 145:248–53. doi:10.1016/j.biortech.2012.12.185.
  • Wang, Y., S. Ou, P. Liu, F. Xue, and S. Tang. 2006. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A, Chemical 252 (1–2):107–12. doi:10.1016/j.molcata.2006.02.047.
  • Xie, W., and H. Wang. 2020. Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel. Renewable Energy 145:1709–19. doi:10.1016/j.renene.2019.07.092.
  • Yusuff, A. S., A. K. Bhonsle, D. P. Bangwal, and N. Atray. 2021. Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment. Renewable Energy 177:1253–64. doi:10.1016/j.renene.2021.06.039.
  • Yusuff, A. S., A. O. Gbadamosi, and N. Atray. 2022. Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production. Renewable Energy 197:1151–62. doi:10.1016/j.renene.2022.08.032.
  • Zhang, W., C. Wang, B. Luo, P. He, L. Li, and G. Wu. 2023. Biodiesel production by transesterification of waste cooking oil in the presence of graphitic carbon nitride supported molybdenum catalyst. Fuel 332:126309. doi:10.1016/j.fuel.2022.126309.
  • Zik, N. A. F. A., S. Sulaiman, and P. Jamal. 2020. Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renewable Energy 155:267–77. doi:10.1016/j.renene.2020.03.144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.