122
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultra-low temperature sono-assisted CO2 stripping/ carbon-rich solvent regeneration using different ultrasonic frequencies

, ORCID Icon, &
Pages 10408-10418 | Received 02 Feb 2023, Accepted 04 Aug 2023, Published online: 14 Aug 2023

References

  • Abu Zahra, M., L. Schneiders, J. Niederer, P. Feron, and G. Versteeg. 2007. CO2 capture from power plants. International Journal of Greenhouse Gas Control 1 (1):37–46. doi:10.1016/S1750-5836(06)00007-7.
  • Ambedkar, B. 2012. Ultrasonic coal-wash for de-ashing and de-sulfurization: experimental investigation and mechanistic modeling. first ed. New York: Springer Science & Business Media. 10.1007/978-3-642-25017-0.
  • Bougie, F., and X. Fan. 2018. Microwave regeneration of monoethanolamine aqueous solutions used for CO2 capture. International Journal of Greenhouse Gas Control 79:165–72. doi:10.1016/j.ijggc.2018.10.008.
  • Buvik, V., R. R. Wanderley, and H. L. Knuutila. 2021. Addition of potassium iodide reduces oxidative degradation of monoethanolamine (MEA). Chemical Engineering Science: X 10:100096. doi:10.1016/j.cesx.2021.100096.
  • Chen, P. C., and L. Y-L. 2019. Optimization in the stripping process of CO2 Gas using mixed amines. Energies 12 (11):2202. doi:10.3390/en12112202.
  • Chi, S., and G. T. Rochelle. 2002. Oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research 41 (17):4178–86. doi:10.1021/ie010697c.
  • D’Alessandro, D. M., B. Smit, and J. R. Long. 2010. Carbon dioxide capture: Prospects for new materials, Angew. Angewandte Chemie International Edition 49 (35):6058–82. doi:10.1002/anie.201000431.
  • Da Silva, E. F., H. Lepaumier, A. Grimstvedt, S. J. Vevelstad, A. Einbu, K. Vernstad, H. F. Svendsen, and K. Zahlsen. 2012. Understanding 2-Ethanolamine degradation in postcombustion CO 2 capture. Industrial and Engineering Chemistry Research 51 (41):13329–38. doi:10.1021/ie300718a.
  • Davis, J., and G. Rochelle. 2009. Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia 1 (1):327–33. doi:10.1016/j.egypro.2009.01.045.
  • Environmental Protection Agency U.S. 2021. Global Greenhouse Gas emissions data. Accessed June15, 2021. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.
  • Figueroa, J., T. Fout, S. Plasynski, H. McIlvried, and R. Srivastava. 2008. Advances in CO2 capture technology—the U.S. Department of energy’s carbon Sequestration Program. International Journal of Greenhouse Gas Control 2 (1):9–20. doi:10.1016/S1750-5836(07)00094-1.
  • Huang, Q. 2015. Thermal degradation of amines for CO2 capture. Theses and Dissertations–Chemistry.51. https://uknowledge.uky.edu/chemistry_etds/51.
  • International Energy Agency. 2020. World energy outlook. Accessed May 14, 2021. https://www.iea.org/reports/world-energy-outlook-2020.
  • Ji, L., S. J. Miksche, L. M. Rimpf, G. A. Farthing. 2009. CO2 chemical solvent screening at the Babcock & Wilcox Company. Proceedings of the 8th Annual Conference on Carbon Capture and Sequestration, Pittsburgh, PA.
  • Kohl, A., and R. Nielsen. 1997. Gas Purification. 5th ed. Houston, Texas: Gulf Publishing Company.
  • Legay, M., N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps. 2011. Enhancement of heat transfer by ultrasound. Review and Recent Advances, International Journal of Chemical Engineering 670108:1–17. doi:10.1155/2011/670108.
  • Lin, P. H., and D. S. H. Wong. 2014. Carbon dioxide capture and regeneration with amine/alcohol/water blends. International Journal of Greenhouse Gas Control 26:69–75. doi:10.1016/j.ijggc.2014.04.020.
  • Ltayeb, A., M. Stern, H. Herzog, and T. Hatton. 2014. Energetics of electrochemically-mediated amine regeneration. Energy Procedia 63:595–604. doi:10.1016/j.egypro.2014.11.064.
  • Mason T. J., and Lorimer J. P. 2003. Applied Sonochemistry: the Uses of power ultrasound in chemistry and processing. Wiley.
  • Masson-Delmotte, V., P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, and IPCC. 2018. Global warming of 1.5°C, world meteorological organization. Geneva, Switzerland: IPCC: 32.
  • McGurk, S. J., C. F. Martín, S. Brandani, M. B. Sweatman, and X. Fan. 2017. Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture. Applied Energy 192:126–33. doi:https://doi.org/10.1016/j.apenergy.2017.02.012.
  • Mertens, J., H. Lepaumier, D. Desagher, and M. L. Thielens. 2013. Understanding ethanolamine (MEA) and ammonia emissions from amine based post combustion carboncapture: Lessons learned from field tests. International Journal of Greenhouse Gas Control 13:72–77. doi:10.1016/j.ijggc.2012.12.013.
  • NASA Global Climate Change, Carbon dioxide. 2021. Accessed June 31,2021. https://climate.nasa.gov/vital-signs/carbon-dioxide.
  • Nilavuckkarasi, R. K., P. Muthumari, B. Ambedkar, and M. Moniha. 2020. Carbon-rich solvent regeneration in solvent-based post-combustion CO2 capture process (PCCC): process intensification by megasonics. Chemical Engineering & Processing - Process Intensification 151:107913. doi:10.1016/j.cep.2020.107913.
  • Oyenekan, B. A., and G. T. Rochelle. 2007. Alternative stripper configurations for CO2 capture by aqueous amines. AIChE Journal 53 (12):3144–54. doi:10.1002/aic.11316.
  • Paraschiv, S., and L. Paraschiv. 2020. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports 6:237–42. doi:10.1016/j.egyr.2020.11.116.
  • Qi, G., K. Liu, A. House, S. Salmon, B. Ambedkar, R. A. Frimpong, J. E. Remias, and K. Liu. 2018. Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping. Applied Energy 209:180–89. doi:10.1016/j.apenergy.2017.10.083.
  • Rackely, S. A. 2017. Carbon capture and Storage. 2nd Eds. Amsterdam:ElsevierThe Netherlands.
  • Rao, A. B., E. S. Rubin, and A. Technical. 2002. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant Greenhouse Gas Control. Environmental Science Technology 36 (20):4467–75. doi:10.1021/es0158861.
  • Rieder, A., S. Dhingra, P. Khakharia, L. Zangrilli, B. Schallert, R. Irons, S. Unterberger, P. van Os, and E. Goetheer. 2017. Understanding solvent degradation: A study from three different pilot plants within the OCTAVIUS project. Energy Procedia 114:1195–209. doi:10.1016/j.egypro.2017.03.1376.
  • Sexton, A., and G. RochelleG. 2009. Catalysts and inhibitors for oxidative degradation ofmonoethanolamine. International Journal of Greenhouse Gas Control 3 (6):704–11. doi:10.1016/j.ijggc.2009.08.007.
  • Tay, W. H., K. K. Lau, and A. M. Shariff. 2016. High frequency ultrasonic-assisted CO2 absorption in a high-pressure water batch system. Ultrasonics Sonochemistry 33:190–96. doi:10.1016/j.ultsonch.2016.04.004.
  • Tzanakis, G. S. B., D. G. Lebon, K. Eskina, and K. Pericleous. 2016. Pericleous, investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium. Materials and Design 90:979–83. doi:10.1016/j.matdes.2015.11.010.
  • Tzanakis, I., G. S. B. Lebon, D. G. Eskin, K. Pericleous, and Tzanakis. 2015. Effect of input power and temperature on the cavitation intensity during the ultrasonic treatment of molten aluminium. Transactions of the Indian Institute of Metals 68 (6):1023–26. doi:10.1007/s12666-015-0639-0.s.
  • Vega, F., F. Baena-Moreno, L. Gallego Fernández, E. Portillo, B. Navarrete, and Z. Zhang. 2020. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Applied Energy 260:114313. doi:10.1016/j.apenergy.2019.114313.
  • Wang, M., S. Hariharan, R. A. Shaw, and T. Hatton. 2019. Energetics of electrochemically mediated amine regeneration process for flue gas CO2 capture. International Journal of Greenhouse Gas Control 82:48–58. doi:10.1016/j.ijggc.2018.12.028.
  • Yao, Y., Y. Pan, and S. Liu. 2020. Power ultrasound and its applications: A state-of-the-art review. Ultrasonic Sonochemistry 62:104722. doi:10.1016/j.ultsonch.2019.104722.
  • Ying, J., D. Eimer, F. Brakstad, and H. A. Haugen. 2018. Ultrasound intensified CO2 desorption from pressurized loaded monoethanolamine solutions. I. parameters investigation and modelling. Energy 163:168–79. doi:10.1016/j.energy.2018.08.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.