172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transfer learning-based fault detection in wind turbine blades using radar plots and deep learning models

, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 10789-10801 | Received 15 Feb 2023, Accepted 27 May 2023, Published online: 04 Sep 2023

References

  • Agarwal, T., S. Verma, and A. Gaurh. 2016. “Issues and challenges of wind energy,” in International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, pp. 67–72. doi: 10.1109/ICEEOT.2016.7754761.
  • Antoniadou, I., N. Dervilis, E. Papatheou, A. E. Maguire, and K. Worden. 2015. Aspects of structural health and condition monitoring of offshore wind turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences 373 (2035):20140075. doi:10.1098/rsta.2014.0075.
  • Ben Ali, R., S. Bouadila, M. Arıcı, and A. Mami. Oct 2021. Feasibility study of wind turbine system integrated with insulated greenhouse: Case study in Tunisia. Sustainable Energy Technologies and Assessments 47:101333. doi: 10.1016/j.seta.2021.101333.
  • Ben Ali, J., L. Saidi, S. Harrath, E. Bechhoefer, and M. Benbouzid. 2018. Online automatic diagnosis of wind turbine bearings progressive degradations under real experimental conditions based on unsupervised machine learning. Applied Acoustics 132:167–81. doi:10.1016/j.apacoust.2017.11.021.
  • Chehouri, A., R. Younes, A. Ilinca, and J. Perron. 2015. Review of performance optimization techniques applied to wind turbines. Applied Energy 142:361–88. doi:10.1016/j.apenergy.2014.12.043.
  • Chen, B., P. C. Matthews, and P. J. Tavner. 2013. Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS. Expert Systems with Applications 40 (17):6863–76. doi:10.1016/j.eswa.2013.06.018.
  • Choe Wei Chang, C., T. Jian Ding, T. Jian Ping, K. Chia Chao, and M. A. S. Bhuiyan. Oct 2022. Getting more from the wind: Recent advancements and challenges in generators development for wind turbines. Sustainable Energy Technologies and Assessments 53:102731. doi: 10.1016/j.seta.2022.102731.
  • Fernandez-Gauna, B., U. Fernandez-Gamiz, and M. Graña. 2017. Variable speed wind turbine controller adaptation by reinforcement learning. Integrated Computer-Aided Engineering 24 (1):27–39. doi:10.3233/ICA-160531.
  • Joshuva, A., and V. Sugumaran. 2016. Fault diagnostic methods for wind turbine: A review. ARPN Journal of Engineering & Applied Sciences 11 (7):4654–68.
  • Joshuva, A., and V. Sugumaran. 2017a. Classification of various wind turbine blade faults through vibration signals using hyperpipes and voting feature intervals algorithm. International Journal of Performability Engineering 13 (3):247–58. doi:10.23940/ijpe.17.03.p1.247258.
  • Joshuva, A., and V. Sugumaran. Mar 2017c. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study. ISA Transactions 67:160–72. doi: 10.1016/j.isatra.2017.02.002.
  • Joshuva, A., and V. Sugumaran. 2018a. A machine learning approach for condition monitoring of wind turbine blade using autoregressive moving average (ARMA) features through vibration signals: A comparative study. Progress in Industrial Ecology 12 (1–2):14–34. doi:10.1504/PIE.2018.095867.
  • Joshuva, A., and V. Sugumaran. 2018b. A study of various blade fault conditions on a wind turbine using vibration signals through histogram features. Journal of Engineering Science & Technology 13 (1):102–21. doi:10.1504/PIE.2019.10022055.
  • Joshuva, A., and V. Sugumaran. 2019. Selection of a meta classifier-data model for classifying wind turbine blade fault conditions using histogram features and vibration signals: A data-mining study. Progress in Industrial Ecology 13 (3):232–251. doi:10.1504/PIE.2019.100890.
  • Joshuva, A., and V. Sugumaran. 2020. A lazy learning approach for condition monitoring of wind turbine blade using vibration signals and histogram features. Measurement (Lond) 152:107295. doi:10.1016/j.measurement.2019.107295.
  • Kusiak, A., and A. Verma. Jan 2011. A data-driven approach for monitoring blade pitch faults in wind turbines. IEEE Transactions on Sustainable Energy 2(1):87–96. doi: 10.1109/TSTE.2010.2066585.
  • Lee, J. K., J. Y. Park, K. Y. Oh, S. H. Ju, and J. S. Lee. 2015. Transformation algorithm of wind turbine blade moment signals for blade condition monitoring. Renew Energy 79 (1):209–18. doi:10.1016/j.renene.2014.11.030.
  • Liton Hossain, M., A. Abu-Siada, and S. M. Muyeen. 2018. Methods for advanced wind turbine condition monitoring and early diagnosis: A literature review. Energies (Basel) 11 (5):1309. doi:10.3390/en11051309.
  • Manju, B. R., A. Joshuva, and V. Sugumaran. 2018. A data mining study for condition monitoring on wind turbine blades using hoeffding tree algorithm through statistical and histogram features. International Journal of Mechanical Engineering and Technology 9 (1):1061–79.
  • Maron, J., D. Anagnostos, B. Brodbeck, and A. Meyer. 2022. Artificial intelligence-based condition monitoring and predictive maintenance framework for wind turbines. Journal of Physics: Conference Series 2151 (1):012007. doi:10.1088/1742-6596/2151/1/012007.
  • Naveen Venkatesh, S., Arun Balaji, P., Elangovan, M., Annamalai, K., Indira, V., Sugumaran, V., and Mahamuni, V. S. 2022. Transfer learning-based condition monitoring of single point Cutting tool. Computational Intelligence and Neuroscience 2022.
  • Portal-Porras, K., U. Fernandez-Gamiz, E. Zulueta, A. Ballesteros-Coll, and A. Zulueta. Dec 2022. CNN-based flow control device modelling on aerodynamic airfoils. Scientific Reports 12(1): doi:10.1038/s41598-022-12157-w.
  • Price, T. J. 2005. James Blyth — Britain’s first Modern wind power Pioneer. Wind Engineering 29 (3):191–200. doi:10.1260/030952405774354921.
  • Rajamohan, S., A. Vinod, M. Pragada Venkata Sesha Aditya, H. Gopalakrishnan Vadivudaiyanayaki, V. Nhanh Nguyen, M. Arıcı, S. Nižetić, T. Thai Le, R. Hidayat, and D. Tuyen Nguyen. Oct 2022. Approaches in performance and structural analysis of wind turbines – a review. Sustainable Energy Technologies and Assessments 53:102570. doi: 10.1016/j.seta.2022.102570.
  • Saenz-Aguirre, A., E. Zulueta, U. Fernandez-Gamiz, A. Ulazia, and D. Teso-Fz-Betono. Mar 2020. Performance enhancement of the artificial neural network–based reinforcement learning for wind turbine yaw control. Wind Energy 23 (3):676–90. doi:10.1002/we.2451.
  • Sridharan, N. V., and V. Sugumaran. 2021. Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–17. doi:10.1080/15567036.2021.2020379.
  • Stetco, A., F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes, J. Keane, and G. Nenadic. 2019. Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy 133:620–35. doi:10.1016/j.renene.2018.10.047.
  • Sun, P., J. Li, C. Wang, and X. Lei. 2016. A generalized model for wind turbine anomaly identification based on SCADA data. Applied Energy 168:550–67. doi:10.1016/j.apenergy.2016.01.133.
  • Tang, B., T. Song, F. Li, and L. Deng. 2014. Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renew Energy 62:1–9. doi:10.1016/j.renene.2013.06.025.
  • Venkatesh, S. N., G. Chakrapani, S. B. Senapti, K. Annamalai, M. Elangovan, V. Indira, V. Sugumaran, and V. S. Mahamuni. 2022. Misfire detection in Spark Ignition Engine using transfer learning. Computational Intelligence and Neuroscience 2022:1–13. doi:10.1155/2022/7606896.
  • Wang, J., X. Yin, Y. Liu, and W. Cai. 2023. Optimal design of combined operations of wind power-pumped storage-hydrogen energy storage based on deep learning. Electric Power Systems Research 218:109216. doi:10.1016/j.epsr.2023.109216.
  • Yang, B., R. Liu, and X. Chen. 2017. Fault diagnosis for a wind turbine Generator bearing via Sparse Representation and Shift-Invariant K-SVD. IEEE Transactions on Industrial Informatics / a Publication of the IEEE Industrial Electronics Society 13 (3):1321–31. doi:10.1109/TII.2017.2662215.
  • Yang, Z. X., X. B. Wang, and J. H. Zhong. 2016. Representational learning for fault diagnosis of wind turbine equipment: A multi-layered extreme learning machines approach. Energies (Basel) 9 (6):379. doi:10.3390/en9060379.
  • Yin, X., and Z. Jiang. 2023. Wave condition preview assisted real-time nonlinear predictive control of point-absorbing wave energy converter based on long short-term memory recurrent neural identification. Mechanical Systems and Signal Processing 188:109669. doi:10.1016/j.ymssp.2022.109669.
  • Yin, X., and M. Lei. 2022. Deep reinforcement learning based coastal seawater desalination via a pitching paddle wave energy converter. Desalination 543:115986. doi:10.1016/j.desal.2022.115986.
  • Yin, X., and X. Zhao. 2019. Big data driven multi-objective predictions for offshore wind farm based on machine learning algorithms. Energy 186:115704. doi:10.1016/j.energy.2019.07.034.
  • Yin, X., Z. Zhao, and W. Yang. 2023. Predictive operations of marine pumped hydro-storage towards real time offshore wind-wave power complementarity: an event-triggered MPC approach. Journal of Energy Storage 62:106583. doi:10.1016/j.est.2022.106583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.