297
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Pyrolysis kinetic behaviour and thermodynamic analysis of waste wind turbine blades (carbon fibres/unsaturated polyester resin)

, , &
Pages 10505-10522 | Received 01 Jun 2023, Accepted 01 Aug 2023, Published online: 14 Aug 2023

References

  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2022a. Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis. Energy. doi:10.1016/j.energy.2021.122070.
  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2022b. Thermal decomposition of CNTs and graphene-reinforced glass fibers/epoxy and their kinetics. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02341-3.
  • Abdelnaby, M. A., J. Eimontas, N. Striugas, and M. A. Abdelnaby. 2020. Modeling of metalized food packaging plastics pyrolysis kinetics using an independent parallel reactions kinetic model. Polymers. 12 (8):1763. Cited 17 times. doi:10.3390/polym12081763.
  • Abdelnaby, M. A., J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2021. Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of coronavirus face masks. Journal of Analytical and Applied Pyrolysis 156:105118. doi:10.1016/j.jaap.2021.105118.
  • Abdelnaby, N., J. Eimontas, and M. A. Striūgas. 2022. Thermal decomposition of CNTs and graphene-reinforced glass fibers/epoxy and their kinetics. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02341-3.
  • Amin Mousavi Khorasani, M., S. Sahebian, and A. Zabett. 2020. Effects of toughened polyester on fatigue behavior of glass fiber reinforced polyester composite for wind turbine blade. Polymer Composites 42 (1):70–82. doi:10.1002/pc.25808.
  • Bai, Z., L. Song, Y. Hu, X. Gong, and R. K. K. Yuen. 2014. Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound. Journal of Analytical and Applied Pyrolysis 105:317–26. doi:10.1016/j.jaap.2013.11.019.
  • Beauson, J., A. Laurent, D. P. Rudolph, and J. Pagh Jensen. 2022. The complex end-of-life of wind turbine blades: A review of the European context. Renewable and Sustainable Energy Reviews 155:111847. doi:10.1016/j.rser.2021.111847.
  • Chen, J., T. Meng, Q. Wang, E. J. Yu Bai, E. Leng, F. Zhang, and G. Liao. 2022. Study on the mechanisms of epoxy resin gasification in supercritical water by molecular dynamics and experimental methods. Chemical Engineering Journal. doi:10.1016/j.cej.2021.133828.
  • Chen, W., Y. Meiying, L. Mingxiao, X. Beidou, J. Hou, Q. Xuejiao, J. Zhang, Y. Wei, and F. Meng. 2023. Characteristics, kinetics and product distribution on pyrolysis process for waste wind turbine blades. Journal of Analytical and Applied Pyrolysis 169:105859. doi:10.1016/j.jaap.2023.105859.
  • Cousinet, S., A. Ghadban, E. Fleury, F. Lortie, J. P. Pascault, and D. Portinha. 2015. Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins. European Polymer Journal 67:539–50. doi:10.1016/j.eurpolymj.2015.02.016.
  • Dahal, R., P. Uusi-Kyyny, J.-P. Pokki, T. Ohra-Aho, and V. Alopaeus. 2023. Conceptual design of a distillation process for the separation of styrene monomer from polystyrene pyrolysis oil: Experiment and simulation. Chemical Engineering Research and Design 195:65–75. doi:10.1016/j.cherd.2023.05.039.
  • Eimontas, J., N. Striūgas, M. A. Abdelnaby, and M. A. Abdelnaby. 2021. Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery. Renewable Energy 179:1385–403. doi:10.1016/j.renene.2021.07.143.
  • Eimontas, J., N. Striūgas, M. A. Abdelnaby, and S. Yousef. 2021. Catalytic pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallized food packaging plastics with different concentrations of ZSM-5 zeolite catalyst (2021. Polymers. 13 (5):702, pp. 1–15. Cited 18 times. doi:10.3390/polym13050702.
  • Gajera, B., U. Tyagi, A. K. Sarma, and M. K. Jha. 2023. Pyrolysis of cattle manure: Kinetics and thermodynamic analysis using TGA and artificial neural network. Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-04476-3.
  • Gonçalves, F. A. M. M., A. C. Fonseca, M. Domingos, A. Gloria, A. C. Serra, and J. F. J. Coelho. 2017. The potential of unsaturated polyesters in biomedicine and tissue engineering: Synthesis, structure-properties relationships and additive manufacturing. Progress in Polymer Science 68:1–34. doi:10.1016/j.progpolymsci.2016.12.008.
  • Kalpokaitė-Dičkuvienė, R., A. Baltušnikas, I. Pitak, S. I. Lukošiūtė, and S. I. Lukošiūtė. 2021. A new strategy for functionalization of char derived from pyrolysis of textile waste and its application as hybrid fillers (CNTs/char and graphene/char) in cement industry (2021. Journal of Cleaner Production 314 (128058):128058. doi:10.1016/j.jclepro.2021.128058.
  • Khalid, M. Y., Z. U. Arif, M. Hossain, and R. Umer. 2023. Recycling of wind turbine blades through modern recycling technologies: A road to zero waste. Renewable Energy Focus 44:373–89. doi:10.1016/j.ref.2023.02.001.
  • Khan, A. A., R. Ahmad, A. Khan, and P. K. Mondal. 2013. Preparation of unsaturated polyester Ce(IV) phosphate by plastic waste bottles and its application for removal of Malachite green dye from water samples. Arabian Journal Chemistry 6 (4):361–68. doi:10.1016/j.arabjc.2010.10.012.
  • Kiminaitė, I., J. Striūgas, N. Eimontas, M. A. Abdelnaby, and M. A. Abdelnaby. 2022. Catalytic pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites over ZSM-5 zeolite catalyst. Fuel 315:123235. Cited 3 times. doi:10.1016/j.fuel.2022.123235.
  • Kiminaitė, I., J. Eimontas, N. Striūgas, and M. Ali Abdelnaby. 2022. Recovery of phenol and acetic acid from glass fibre reinforced thermoplastic resin using catalytic pyrolysis process on ZSM-5 zeolite catalyst and its kinetic behaviour. Thermochimica Acta 718. doi:10.1016/j.tca.2022.179293.
  • Kjærside Storm, B. 2013. Surface protection and coatings for wind turbine rotor blades, in: Advances in wind turbine blade design and materials. doi:10.1533/9780857097286.3.387.
  • Lakshmi, R. V., G. Yoganandan, K. T. Kavya, and B. J. Basu. 2013. Effective corrosion inhibition performance of Ce3+ doped sol–gel nanocomposite coating on aluminum alloy. Progress in Organic Coatings 76 (2–3):367–74. doi:10.1016/j.porgcoat.2012.10.004.
  • Lekavičius, V., N. Striūgas, and N. Striūgas. 2023. Techno-Economic analysis of thermochemical conversion of waste masks generated in the EU during COVID-19 pandemic into energy products. Energies 16 (9):3948. doi:10.3390/en16093948.
  • Leon, M. J. 2023. Recycling of wind turbine blades: recent developments. Current Opinion in Green and Sustainable Chemistry 39:100746. doi:10.1016/j.cogsc.2022.100746.
  • Lichao, G., X. Chunyao, H. Feng, H. Jiang, X. Li, L. Yanning, Z. Sun, Y. Wang, and C. Xu. 2023. Study on isothermal pyrolysis and product characteristics of basic components of waste wind turbine blades. Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap.2023.105964.
  • Lichao, G., X. Li, H. Feng, X. Chunyao, L. Yanning, B. Chen, Dongyang li, and Chang Xu 2023. Analysis of the pyrolysis process, kinetics and products of the base components of waste wind turbine blades (epoxy resin and carbon fiber. Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap.2023.105919.
  • Lichtenegger, G., A. A. Rentizelas, N. Trivyza, and S. Siegl. 2020. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Management 106:120–31. doi:10.1016/j.wasman.2020.03.018.
  • Manfredi, L. B., E. S. Rodríguez, M. Wladyka-Przybylak, and A. Vázquez. 2006. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability 91 (2):255–61. doi:10.1016/j.polymdegradstab.2005.05.003.
  • Martinez-Marquez, D., N. Florin, W. Hall, P. Majewski, H. Wang, and R. A. Stewart. 2022. State-of-the-art review of product stewardship strategies for large composite wind turbine blades. Resources, Conservation and Recycling Advances 15:200109. doi:10.1016/j.rcradv.2022.200109.
  • Ming-Xin, X., J. Hai-Wen, W. Ya-Chang, D. Jin-Yi, X.-X. Meng, H. Jiang, and Q. Lu. 2023. The pyrolysis of end-of-life wind turbine blades under different atmospheres and their effects on the recovered glass fibers. Composites Part B: Engineering. doi:10.1016/j.compositesb.2022.110493.
  • Mohamed, A., J. Eimontas, N. Striūgas, and M. Ali Abdelnaby. 2022. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of end-life ultrafiltration polymer nanocomposite membranes. Chemical Engineering Journal. doi:10.1016/j.cej.2021.131181.
  • Mohamed, A., J. Eimontas, K. Zakarauskas, N. Striūgas, and A. Mohamed. 2021. A new strategy for using lint-microfibers generated from clothes dryer as a sustainable source of renewable energy. Science of the Total Environment 762:143107. doi:10.1016/j.scitotenv.2020.143107.
  • Mohamed, A., J. Eimontas, N. Striūgas, M. Praspaliauskas, M. Ali Abdelnaby, and M. A. Abdelnaby. 2023. Phenol and benzoic acid recovery from end-of-life of polysulfone ultrafiltration membranes and its thermochemical kinetic behaviour, energy Sources, Part A: recovery. Utilization, and Environmental Effects 45 (2):6043–61. doi:10.1080/15567036.2023.2213669.
  • Ni, L., Z. Feng, T. Zhang, Q. Gao, Y. Hou, Y. He, M. Su, H. Ren, W. Hu, and Z. Liu. 2022. Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process. Renewable Energy 197:257–67. doi:10.1016/j.renene.2022.07.132.
  • Patidar, K., A. Singathia, M. Vashishtha, V. Kumar Sangal, and S. Upadhyaya. 2022. Investigation of kinetic and thermodynamic parameters approaches to non-isothermal pyrolysis of mustard stalk using model-free and master plots methods. Materials Science for Energy Technologies 5:6–14. doi:10.1016/j.mset.2021.11.001.
  • Praspaliauskas, K., J. Eimontas, N. Striūgas, M. Zakarauskas, M. A. Abdelnaby, and M. A. Abdelnaby. 2020. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel 282:118737. doi:10.1016/j.fuel.2020.118737.
  • Sanchez, E. M. S., C. A. C. Zavaglia, and M. I. Felisberti. 2000. Unsaturated polyester resins: Influence of the styrene concentration on the miscibility and mechanical properties. Polymer 41 (2):765–69. doi:10.1016/S0032-3861(99)00184-6.
  • Selvaraj, S., P. Rajkumar, M. Kesavan, K. Thirunavukkarasu, S. Gunasekaran, N. S. Devi, and S. Kumaresan. 2020. Spectroscopic and structural investigations on modafinil by FT-IR, FT-Raman, NMR, UV–Vis and DFT methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 224:117449. doi:10.1016/j.saa.2019.117449.
  • Stasiulaitiene, I., K. Zakarauskas, and N. Striūgas. 2023. An eco-friendly strategy for recovery of H2-CH4-rich syngas, benzene-rich tar and carbon nanoparticles from surgical mask waste using an updraft gasifier system. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. doi:10.1080/15567036.2023.2207507.
  • Striūgas, J., N. Eimontas, M. A. Abdelnaby, and M. A. Abdelnaby. 2021. Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites. Energy 233:121167. doi:10.1016/j.energy.2021.121167.
  • Striūgas, J., N. Eimontas, E. Hamdy, M. Trofimov, M. A. Abdelnaby, and M. A. Abdelnaby. 2020. Conversion of end-of-life cotton banknotes into liquid fuel using mini-pyrolysis plant. Journal of Cleaner Production 267:121612. doi:10.1016/j.jclepro.2020.121612.
  • Striūgas, J., N. Eimontas, N. Striūgas, M. Praspaliauskas, and M. A. Abdelnaby. 2023. Catalytic pyrolysis and kinetic study of glass fibre-reinforced epoxy resin over CNTs, graphene and carbon black particles/ZSM-5 zeolite hybrid catalysts. Journal of Thermal Analysis and Calorimetry 148 (3):897–912. doi:10.1007/s10973-022-11776-9.
  • Striūgas, J., N. Eimontas, S. P. Subadra, M. A. Abdelnaby, and M. A. Abdelnaby. 2021. Thermal degradation and pyrolysis kinetic behaviour of glass fibre-reinforced thermoplastic resin by TG-FTIR, Py-GC/MS, linear and nonlinear isoconversional models (2021. Journal of Materials Research and Technology 15:5360–74. doi:10.1016/j.jmrt.2021.11.011.
  • Striūgas, K., J. Eimontas, N. Zakarauskas, and N. Striūgas. 2021. Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. Journal of Cleaner Production 290:125878. doi:10.1016/j.jclepro.2021.125878.
  • Striūgas, N., J. Eimontas, and M. A. Abdelnaby. 2021. Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites. Energy. doi:10.1016/j.energy.2021.121167.
  • Striūgas, N., J. Eimontas, M. A. Abdelnaby, and M. A. Abdelnaby. 2022. A new strategy for butanol extraction from COVID-19 mask using catalytic pyrolysis process over ZSM-5 zeolite catalyst and its kinetic behavior. Thermochimica Acta 711:179198. doi:10.1016/j.tca.2022.179198.
  • Striūgas, N., J. Eimontas, M. Praspaliauskas, and M. A. Abdelnaby. 2022. Pyrolysis kinetic behaviour, TG-FTIR, and GC/MS analysis of cigarette butts and their components. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02698-5.
  • Subadra, S. P., J. Eimontas, N. Striūgas, and N. Striūgas. 2021. Functionalization of char derived from pyrolysis of metallised food packaging plastics waste and its application as a filler in fiberglass/epoxy composites (2021. Process Safety and Environmental Protection 147:723–33. doi:10.1016/j.psep.2021.01.009.
  • Subadra, S. P., P. Griškevičius, S. Milcius, D. Varnagiris, V. Makarevicius, and V. Makarevicius. 2020. Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma. Polymer Testing 90:106701. doi:10.1016/j.polymertesting.2020.106701.
  • Subadra, S. P., P. Griskevicius, and S. Yousef. 2020. Low velocity impact and pseudo-ductile behaviour of carbon/glass/epoxy and carbon/glass/PMMA hybrid composite laminates for aircraft application at service temperature. Polymer Testing 89:106711. doi:10.1016/j.polymertesting.2020.106711.
  • Subadra, S. P., P. Makarevicius, V. Griskevicius, and V. Makarevicius. 2020. High-performance fiberglass/epoxy reinforced by functionalized CNTs for vehicle applications with less fuel consumption and greenhouse gas emissions. Polymer Testing 86:106480. doi:10.1016/j.polymertesting.2020.106480.
  • Subadra, S. P., S. Tuckute, A. Baltušnikas, S. I. Lukošiūtė, E. L. Arafa, and A. Mohamed. 2022. Finite element analysis of fibreglass and carbon fabrics reinforced polyethersulfone membranes. Materials Today Communications. doi:10.1016/j.mtcomm.2022.103682.
  • Sun, Y., S. Dong, C. Hong, X. Zhang, J. Han, and Q. Qu. 2020. A novel combination of precursor pyrolysis assisted sintering and rapid sintering for construction of multi-composition coatings to improve ablation resistance of SiOC ceramic modified carbon fiber needled felt preform composites. Ceramics International 46 (12):20163–72. doi:10.1016/j.ceramint.2020.05.094.
  • Tatariants, M., R. Bendikiene, and G. Denafas. 2017. Mechanical and thermal characterizations of non-metallic components recycled from waste printed circuit boards. Journal of Cleaner Production. doi:10.1016/j.jclepro.2017.08.195.
  • Tatariants, M., S. Yousef, G. Denafas, and R. Bendikiene. 2018. Separation and purification of metal and fiberglass extracted from waste printed circuit boards using milling and dissolution techniques (2018. Environmental Progress and Sustainable Energy 37 (6):2082–92. doi:10.1002/ep.12899.
  • Thuengtung, S., S. Ketnawa, Y. Ding, Y. Cai, and Y. Ogawa. 2023. Effect of mild heat-moisture treatment for harvested raw paddy rice on physicochemical properties and in vitro starch digestibility of cooked rice. Food Hydrocolloids for Health 3:100133. doi:10.1016/j.fhfh.2023.100133.
  • Tichonovas, M., M. Tatariants, L. Kliucininkas, S. I. Lukošiūtė, and L. Yan. 2020. Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production. doi:10.1016/j.jclepro.2020.120078.
  • Tiwari, S., J. Bijwe, and S. Panier. 2011. Polyetherimide composites with gamma irradiated carbon fabric: studies on abrasive wear. Wear 270 (9–10):688–94. doi:https://doi.org/10.1016/j.wear.2011.01.035.
  • Tuckute, S., N. Striūgas, M. Tatariants, M. A. Abdelnaby, L. Kliucininkas, S. Tuckute, and L. Kliucininkas. 2019. A sustainable bioenergy conversion strategy for textile waste with self-catalysts using mini-pyrolysis plant (2019. Energy Conversion and Management 196:688–704. doi:10.1016/j.enconman.2019.06.050.
  • Upadhyayula, V. K. K., V. Gadhamshetty, D. Athanassiadis, M. Tysklind, F. Meng, Q. Pan, J. M. Cullen, and D. M. M. Yacout. 2022. Wind turbine blades using recycled carbon fibers: an environmental assessment. Environmental Science and Technology 56 (2):1267–77. doi:10.1021/acs.est.1c05462.
  • Wu, C., X. Chen, J. Fu, J. Zou, J. Liang, X. Wei, and L. Wang. 2022. ZIF-derived Co/NCNTs as a superior catalyst for aromatic hydrocarbon resin hydrogenation: Scalable green synthesis and insight into reaction mechanism. Chemical Engineering Journal 443:136193. doi:10.1016/j.cej.2022.136193.
  • Xiong, X., L. Li, F. Chen, J. Zhang, and H. Tan. 2022. Typical pollutant species evolution behaviors study in retired wind turbine blade and coal thermal conversion process. Journal of Analytical and Applied Pyrolysis 168:105771. doi:10.1016/j.jaap.2022.105771.
  • Xu, G. T., M. J. Liu, Y. Xiang, and B. Fu. 2022. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete. Journal of Cleaner Production 379:134550. doi:10.1016/j.jclepro.2022.134550.
  • Yang, W., K. H. Kim, and J. Lee. 2022. Upcycling of decommissioned wind turbine blades through pyrolysis. Journal of Cleaner Production 376:134292. doi:10.1016/j.jclepro.2022.134292.
  • Yazdanbakhsh, A., L. C. Bank, K. A. Rieder, Y. Tian, and C. Chen. 2018. Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resources, Conservation and Recycling 128:11–21. doi:10.1016/j.resconrec.2017.08.005.
  • Ye, C., H. Wu, S. Zhu, Z. Fan, D. Huang, F. Han, J. Liu, J. Yang, and H. Liu. 2022. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers. Carbon 186:738–39. doi:10.1016/j.carbon.2021.10.039.
  • Yousef, S., J. Eimontas, I. Stasiulaitiene, K. Zakarauskas, and N. Striūgas. 2022. Pyrolysis of all layers of surgical mask waste as a mixture and its life-cycle assessment (2022. Sustainable Production and Consumption 32:519–31. doi:10.1016/j.spc.2022.05.011.
  • Yousef, S., J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2021. Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres (2021. Renewable Energy 173:733–49. doi:10.1016/j.renene.2021.04.034.
  • Yousef, S., J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2022. Effect of aluminum leaching pretreatment on catalytic pyrolysis of metallised food packaging plastics and its linear and nonlinear kinetic behaviour. Science of the Total Environment 844:157150. doi:10.1016/j.scitotenv.2022.157150.
  • Yousef, S., J. Eimontas, N. Striūgas, A. Mohamed, and M. A. Abdelnaby. 2021. Morphology, compositions, thermal behavior and kinetics of pyrolysis of lint-microfibers generated from clothes dryer. Journal of Analytical and Applied Pyrolysis 155:105037. doi:10.1016/j.jaap.2021.105037.
  • Yousef, S., J. Eimontas, N. Striūgas, M. Praspaliauskas, and M. A. Abdelnaby. 2021. Pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites using linear and nonlinear isoconversional methods. Polymers 13 (10):1543. doi:10.3390/polym13101543.
  • Yousef, S., I. Kiminaitė, J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2022. Catalytic pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites over ZSM-5 zeolite catalyst. Fuel 315:123235. doi:10.1016/j.fuel.2022.123235.
  • Yousef, S., M. Tatariants, R. Bendikiene, R. Kriūkienė, and G. Denafas. 2020. A new industrial technology for closing the loop of full-size waste motherboards using chemical-ultrasonic-mechanical treatment. Process Safety and Environmental Protection 140:367–79. doi:10.1016/j.psep.2020.04.002.
  • Zakarauskas, J., K. Eimontas, N. Striūgas, and N. Striūgas. 2022. A new sustainable strategy for oil, CH4 and aluminum recovery from metallised food packaging plastics waste using catalytic pyrolysis over ZSM-5 zeolite catalyst. Thermochimica acta 713:179223. doi:10.1016/j.tca.2022.179223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.