79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical investigations on the influence of phase change materials on heat transfer reduction across the roof of a building

ORCID Icon, ORCID Icon &
Pages 10554-10568 | Received 10 May 2023, Accepted 07 Aug 2023, Published online: 24 Aug 2023

References

  • Al-Absi, Z. A., M. I. M. Hafizal, M. Ismail, H. Awanga, and A. Al-Shwaiter. 2022. Properties of PCM-based composites developed for the exterior finishes of building walls. Case Studies in Construction Materials 16:e00960. doi:10.1016/j.cscm.2022.e00960.
  • Al-Absi, Z. A., M. I. M. Hafizal, M. Ismail, and A. Ghazali. 2021. Towards Sustainable development: Building’s retrofitting with PCMs to enhance the indoor thermal comfort in tropical climate, Malaysia. Sustainability 13 (7):3614. Applied Energy, Volume 331, 2023, 120362, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2022.120362. doi:10.3390/su13073614.
  • Al-Yasiri, Q., and M. Szabo. 2023a. Experimental study of PCM-enhanced building envelope towards energy-saving and decarbonisation in a severe hot climate. Energy &buildings 279:112680. doi:10.1016/j.enbuild.2022.112680.
  • Al-Yasiri, Q., and M. Szabo. 2023b. Numerical analysis of thin building envelope-integrated phase change material towards energy-efficient buildings in severe hot location. Sustainable Cities and Society 89 (2023):104365. doi:10.1016/j.scs.2022.104365.
  • Boobalakrishnan a, P., P. M. Kumar a, G. Balaji b, D. S. Jenaris c, S. Kaarthik a, M. J. P. Babu, and K. Karthhik. 2021. Thermal management of metal roof building using phase change material (PCM). Materials Today 47:5052–58. doi:10.1016/j.matpr.2021.05.012.
  • Duan, J., Y. Xiong, and D. Yang. 2019. “Melting behavior of phase change material in honeycomb structures with different geometrical cores. Energies 12 (15):2920. doi:10.3390/en12152920.
  • Gupta, B., J. Bhalavi, S. Sharma, and A. Bisen. 2021. Phase change materials in solar energy applications”: A review. Materials Today 46 (Part11):5550–54. doi:10.1016/j.matpr.2020.09.343.
  • Haridass, K., N. Nallusamy, and S. Rajkumar. 2022. Experimental and numerical investigation on phase change material filled reinforced cement concrete roof slab for mitigating the heat transfer. Part A: Recovery, Utilization, and Environmental Effects 44 (2):3850–65. doi:10.1080/15567036.2022.2068700.
  • Hichema, N., S. Noureddine, S. Nadiab, and D. Djamilab. 2013. Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings. Energy Procedia 36:766–75. doi:10.1016/j.egypro.2013.07.089.
  • Hirunlabh, J., S. Wachirapuwadon, N. Pratinthong, and J. Khedari. 2001. New configurations of a roof solar collector maximizing naturalventilation. Building and Environment 36 (3):383–91. doi:https://doi.org/10.1016/S0360-1323(00)00016-0.
  • IEA (2021), Global energy review 2021, IEA, Paris https://www.iea.org/reports/global-energy-review-2021, License: CC BY 4.0.
  • IEA (2022), Energy system overview 2022, IEA, Paris https://www.iea.org/reports/energy-system-overview, License: CC BY 4.0.
  • Jia, J., B. Liu, L. Ma, H. Wang, D. Li, and Y. Wang. 2021. Energy saving performance optimization and regional adapt ability of prefabricated buildings with PCM in different climates. Case Studies in Thermal Engineering 26:101164. doi:10.1016/j.csite.2021.101164.
  • Kalbasi, R., and M. A. Frand. 2022. Which one is more effective to add to building envelope: Phase change material, thermal insulation, or their combination to meet zero-carbon-ready buildings. Journal of Cleaner Production 367:133032. doi:10.1016/j.jclepro.2022.133032.
  • Kong, Y., X. Y. Sih, S. Chandra Paul, L. Sing Wong, and B. Šavija. 2019. Thermal response of mortar panels with different forms of macro-encapsulated phase change materials: A finite element study. Energies 12 (13):2636. doi:10.3390/en12132636.
  • Kuznik, F., J. Virgone, and K. Johannes. 2011. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renewable Energy 36 (5):1458–62. doi:10.1016/j.renene.2010.11.008.
  • Marchi, S., S. Pagliolico, and G. Sassi. 2013. Characterization of panels containing micro-encapsulated phase change materials. Energy Conversion and Management 74:261–68. doi:10.1016/j.enconman.2013.05.027.
  • Parhizi, M., and A. Jain. 2019. The impact of thermal properties on performance of phase change based energy storage systems. Applied Thermal Engineering 162 (2019):114154. doi:10.1016/j.applthermaleng.2019.114154.
  • Park, J., J. Jeon, J. Lee, S. Wi, B. Yun, and S. Kim. 2019. Comparative analysis of the PCM application according to the building type as retrofit system. Building and Environment 151:291–302. doi:10.1016/j.buildenv.2019.01.048.
  • Pasupathy, A., L. Athanasius, R. Velraj, and R. V. Seeniraj. 2008. Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Applied Thermal Engineering 28 (5–6):556–65. doi:10.1016/j.applthermaleng.2007.04.016.
  • Peng, B., G. Huang, P. Wang, L. Wenming, W. Chang, M. Jiaxuan, and L. Chen. 2019. Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems. Energy 172 (2019):580e591. doi:10.1016/j.energy.2019.01.147.
  • Kumar Singh P Rathore, N. Kumar Gupta, D. Yadav, S. Kumar Shukla, and S. Kaul. 2022. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustainable Cities and Society 79:103690. doi:10.1016/j.scs.2022.103690.
  • Reddy, K. S., V. Mudgal, and T. K. Mallick. 2017. Thermal performance analysis of multi-phase change material layer-integrated building roofs for energy efficiency in built-Environment. Energies 10 (9):1367. doi:10.3390/en10091367.
  • Royona, L., L. Karima, and A. Bontemps. 2013. Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy and Buildings 63:29–35. doi:10.1016/j.enbuild.2013.03.042.
  • Royon, L., L. Karima, and A. Bontemps. 2014. Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings. Energy & Buildings 82:385–90. Energy and Buildings: 82: 385–390. doi:10.1016/j.enbuild.2014.07.012.
  • Saleem Khan, A., M. Sabuj Kumar, R. Sudhir Chella, and B. Devdyuti. 2019. Chennai city and coastal hazards: Addressing Community-based Adaptation through the Lens of climate change and Sea-Level rise (CBACCS). Climate Change, Hazards and Adaptation Options 777–798. doi:10.1007/978-3-030-37425-9_39.
  • Song, Y., Darani, K Sheykhi., Khdair, A I., Abu-Rumman, G, and Kalbasi, R. 2021. A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports 7:2784–2820. doi: 10.1016/j.egyr.2021.04.056.
  • Srinivasan, P. S. S., and M. Ravikumar. 2014. Heat transfer analysis in PCM-filled RCC roof for thermal management. Journal of Mechanical Science and Technology 28 (3):1073–78. doi:10.1007/s12206-013-1137-0.
  • Sun, W., Zhang, Z., Wu, Z., and Xu, Y. 2022. Numerical modeling and optimization of annual thermal characteristics of an office room with PCM active–passive coupling system. Energy and Buildings 254:111629. doi: 10.1016/j.enbuild.2021.111629.
  • Surulivel Rajan, T., N. B. Geetha, and S. Rajkumar. 2022. Parametric analysis of thermal behavior of the building with phase change materials for passive cooling. Part A: Recovery, Utilization, and Environmental Effects 44 (3):5627–39. doi:10.1080/15567036.2021.1910752.
  • Tahir F., Sami G. Al-Ghamdi. 2023. “Climatic change impacts on the energy requirements for the built environment sector.” Energy Reports 9:670–676: https://doi.org/10.1016/j.egyr.2022.11.033.
  • Terlouw, T., T. AlSkaif, C. Bauer, M. Mazzotti, R. McKenna. 2023a. Designing residential energy systems considering prospective costs and life cycle GHG emissions. Applied Energy Volume 331:120362. ISSN 0306-2619. doi:10.1016/j.apenergy.2022.120362.
  • Tunçbilek, E., M. Arıcıa, M. Krajcikb, S. Nizeticc, and H. Karabaya. 2020. Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation. Applied Thermal Engineering 179:115750. doi:10.1016/j.applthermaleng.2020.115750.
  • Wonorahardjo, S., I. M. Sutjahja, Y. Mardiyati, H. Andoni, D. Thomas, R. A. Achsani, and S. Steven. 2020. Characterizing thermal behavior of buildings and its effect on urban heat island in tropical areas. International Journal of Energy & Environmental Engineering 11 (1):129–42. doi:10.1007/s40095-019-00317-0.
  • Zhang, C., O. Kazanci, R. Levinson, P. Heiselberg, B. W. Olesen, Chiese, G., Sodagar, B., Ai, Z., et al. 2021. Resilient cooling strategies – a critical review and qualitative assessment. Energy & Buildings 25:111312. doi:10.1016/j.enbuild.2021.111312.
  • Zhou, Y., and Z. Liu e. 2023. A cross-scale ‘material-component-system’ framework for transition towards zero-carbon buildings and districts with low, medium and high-temperature phase change materials. Sustainable Cities and Society 89:104378. doi:10.1016/j.scs.2022.104378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.