87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of formation and growth process of ash deposition on the convective heating surface of a 400t/d MSW incinerator based on different operating days

, , , & ORCID Icon
Pages 10616-10632 | Received 07 Jun 2023, Accepted 11 Aug 2023, Published online: 23 Aug 2023

References

  • Anthony, E. J., L. Jia, and K. Laursen. 2001. Strength development due to long term sulfation and carbonation/sulfation phenomena. The Canadian Journal of Chemical Engineering 79 (3):356–66. doi:10.1002/cjce.5450790308.
  • Bai, M., L. Reddy, and T. Hussain. 2018. Experimental and thermodynamic investigations on the chlorine-induced corrosion of HVOF thermal sprayed NiAl coatings and 304 stainless steels at 700°C. Corrosion Science 135:147–57. doi:10.1016/j.corsci.2018.02.047.
  • Bourtsalas, A. C. 2023. Energy recovery from solid wastes in China and a Green-BRI mechanism for advancing sustainable waste management of the global south. Waste Disposal & Sustainable Energy 1–13. doi:10.1007/s42768-022-00130-2.
  • Cai, Y., K. Tay, Z. Zheng, W. Yang, H. Wang, G. Zeng, Z. Li, S. K. Boon, and P. Subbaiah. 2018. Modeling of ash formation and deposition processes in coal and biomass fired boilers: a comprehensive review. Applied Energy 230:1447–544. doi:10.1016/j.apenergy.2018.08.084.
  • Cheela, V. R. S., S. Goel, M. John, and B. Dubey. 2021. Characterization of municipal solid waste based on seasonal variations, source and socio-economic aspects. Waste Disposal & Sustainable Energy 3 (4):275–88. doi:10.1007/s42768-021-00084-x.
  • Degereji, M. U., S. R. Gubba, D. B. Ingham, L. Ma, M. Pourkashanian, A. Williams, and J. Williamson. 2013. Predicting the slagging potential of co-fired coal with sewage sludge and wood biomass. Fuel 108:550–56. doi:10.1016/j.fuel.2012.12.030.
  • Demirbas, A., R. H. Alamoudı, W. Ahmad, and M. H. Sheıkh. 2016. Optimization of municipal solid waste (MSW) disposal in Saudi Arabia. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 38 (13):1929–37. doi:10.1080/15567036.2015.1034385.
  • Harun, Y. N., T. J. Han, T. Vijayakumar, A. Saeed, and M. Afzal. 2019. Ash deposition characteristics of Industrial biomass waste and agricultural residues. Materials Today: Proceedings 19:1712–21. doi:10.1016/j.matpr.2019.11.201.
  • Huang, B., M. Gan, Z. Ji, X. Fan, D. Zhang, X. Chen, Z. Sun, X. Huang, and Y. Fan. 2022. Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: a review. Process Safety and Environmental Protection 159:547–65. doi:10.1016/j.psep.2022.01.018.
  • Ji, J., L. Cheng, L. Nie, L. Li, and Y. Wei. 2020. Sodium transformation simulation with a 2-D CFD model during circulating fluidized bed combustion. Fuel 267:117175. doi:10.1016/j.fuel.2020.117175.
  • Kleinhans, U., C. Wieland, F. J. Frandsen, and H. Spliethoff. 2018. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior. Progress in Energy and Combustion Science 68:65–168. doi:10.1016/j.pecs.2018.02.001.
  • Lachman, J., M. Baláš, M. Lisý, H. Lisá, P. Milčák, and P. Elbl. 2021. An overview of slagging and fouling indicators and their applicability to biomass fuels. Fuel Processing Technology 217:106804. doi:10.1016/j.fuproc.2021.106804.
  • Lai, Z. Y., X. Q. Ma, Y. T. Tang, M. D. Li, and J. Ni. 2014. Deposit analysis of water-wall tubes in a municipal solid waste grate incinerator. Applied Thermal Engineering 66 (1–2):415–22. doi:10.1016/j.applthermaleng.2014.01.052.
  • Laxminarayan, Y., P. A. Jensen, H. Wu, F. J. Frandsen, B. Sander, and P. Glarborg. 2019. Biomass fly ash deposition in an entrained flow reactor. Proceedings of the Combustion Institute 37: 2689–96. doi:10.1016/j.proci.2018.06.039.
  • Liang, Y., J. Li, X. Long, X. Lu, and D. Zhang. 2023. A numerical simulation study of ash deposition in a circulating fluidized bed during Zhundong lignite combustion. Fuel 333:126501. doi:10.1016/j.fuel.2022.126501.
  • Liu, X., Q. Chen, L. Long, X. Meng, G. Lv, Q. Huang, and X. Jiang. 2021. In-situ sampling investigation of deposition and corrosion of convective heating surfaces in a grate type municipal solid waste incineration plant: A case study. Waste Disposal & Sustainable Energy 3 (4):299–308. doi:10.1007/s42768-021-00087-8.
  • Lv, Y., L. Xu, Y. Niu, G. Wang, Y. Lei, H. Huang, and S. Hui. 2022. Investigation on ash deposition formation during co-firing of coal with wheat straw. Journal of the Energy Institute 100:148–59. doi:10.1016/j.joei.2021.11.009.
  • Ma, W., T. Wenga, F. J. Frandsen, B. Yan, and G. Chen. 2020. The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science 76:100789. doi:10.1016/j.pecs.2019.100789.
  • Nag, M., and T. Shimaoka. 2023. A novel and sustainable technique to immobilize lead and zinc in MSW incineration fly ash by using pozzolanic bottom ash. Journal of Environmental Management 329:117036. doi:10.1016/j.jenvman.2022.117036.
  • NBOS (National Bureau of Statistics). 2022. China statistical yearbook. Beijing: China Statistics Press.
  • Phongphiphat, A., C. Ryu, K. N. Finney, V. N. Sharifi, and J. Swithenbank. 2011. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant. Journal of Hazardous Materials 186 (1):218–26. doi:10.1016/j.jhazmat.2010.10.095.
  • Reichelt, J., G. Pfrang-Stotz, B. Bergfeldt, H. Seifert, and P. Knapp. 2013. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants. Waste Management 33 (1):43–51. doi:10.1016/j.wasman.2012.08.011.
  • Roy, R., B. Schooff, X. Li, S. Montgomery, J. Tuttle, J. O. L. Wendt, K. Dickson, B. Iverson, and A. Fry. 2023. Ash aerosol particle size distribution, composition, and deposition behavior while co-firing coal and steam-exploded biomass in a 1.5 MWth combustor. Fuel Processing Technology 243:107674. doi:10.1016/j.fuproc.2023.107674.
  • Shu, X., J. Li, M. Zhu, Z. Liu, X. Lu, Z. Zhang, and D. Zhang. 2021. An experimental investigation into bed particle agglomeration and ash deposition during circulating fluidized bed gasification of Zhundong lignite. Journal of the Energy Institute 96:192–204. doi:10.1016/j.joei.2021.03.007.
  • Tang, Z., X. Chen, D. Liu, Y. Zhuang, M. Ye, H. Sheng, and S. Xu. 2016. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator. Journal of Environmental Sciences 48:169–78. doi:10.1016/j.jes.2016.02.017.
  • Tang, S.-Z., Y.-L. He, F.-L. Wang, Q.-X. Zhao, and Y. Yu. 2021. On-site experimental study on fouling and heat transfer characteristics of flue gas heat exchanger for waste heat recovery. Fuel 296:120532. doi:10.1016/j.fuel.2021.120532.
  • Wang, L., M. Becidan, and Ø. Skreiberg. 2012. Sintering behavior of agricultural residues ashes and effects of additives. Energy & Fuels 26 (9):5917–29. doi:10.1021/ef3004366.
  • Wang, F.-L., Y.-L. He, Z.-X. Tong, and S.-Z. Tang. 2017. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems. International Journal of Heat and Mass Transfer 104:774–86. doi:10.1016/j.ijheatmasstransfer.2016.08.112.
  • Wang, C., L. Jia, and Y. Tan. 2011. Simultaneous carbonation and sulfation of CaO in Oxy-Fuel CFB combustion. Chemical Engineering & Technology 34 (10):1685–90. doi:10.1002/ceat.201000570.
  • Wang, Y., X. Qiu, Z. Zhou, Y. Duan, L. Li, J. Dai, H. Lin, Y. Luo, Z. Sun, and L. Duan. 2021. Ash deposition mechanism of shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology 221:106948. doi:10.1016/j.fuproc.2021.106948.
  • Xu, Z., J. Li, Z. Han, and X. Yang. 2023. Investigation of deposition characteristics on tube-bundle heat exchanger with an improved ash particle model. Powder Technology 413:118027. doi:10.1016/j.powtec.2022.118027.
  • Yang, X., D. Ingham, L. Ma, A. Williams, and M. Pourkashanian. 2016. Predicting ash deposition behaviour for co-combustion of palm kernel with coal based on CFD modelling of particle impaction and sticking. Fuel 165:41–49. doi:10.1016/j.fuel.2015.10.056.
  • Yang, S., G. Song, Y. Na, and Z. Yang. 2018. Alkali metal transformation and ash deposition performance of high alkali content Zhundong coal and its gasification fly ash under circulating fluidized bed combustion. Applied Thermal Engineering 141:29–41. doi:10.1016/j.applthermaleng.2018.05.113.
  • Zhang, D., B. Deng, T. Zhou, Z. Huang, H. Yang, M. Zhang, and S. Li. 2022. Ash deposition characteristics on heating surface in biomass circulating fluidized bed boiler. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):8077–95. doi:10.1080/15567036.2022.2120119.
  • Zhang, Y. D., X. L. Du, M. Yue, M. W. Yan, and Y. T. Shi. 2020. Heat transfer and ash deposition performance of heat exchange surface in waste incineration flue gas. International Journal of Heat and Mass Transfer 155:119691. doi:10.1016/j.ijheatmasstransfer.2020.119691.
  • Zhang, X., H. Liu, T. Chen, H. Li, G. Wang, Y. Wu, and H. Yao. 2021. Alleviation of thermal corrosion caused by molten ash on heat-exchange tubes in MSW incinerators: effects of Ni-, co-, Fe-based HVOF coatings. Proceedings of the Combustion Institute 38 (4):5453–61. doi:10.1016/j.proci.2020.06.150.
  • Zhao, J., B. Li, X. Wei, Y. Zhang, and T. Li. 2020. Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incineration. Energy 202:117773. doi:10.1016/j.energy.2020.117773.
  • Zheng, Z., H. Wang, Y. Cai, X. Wei, and S. Wu. 2018. A novel method used to study growth of ash deposition and in situ measurement of effective thermal conductivity of ash deposit. Heat Transfer-Asian Research 47 (2):271–85. doi:10.1002/htj.21302.
  • Zhou, H., Y. Xing, and M. Zhou. 2021. Effects of modified kaolin adsorbents on sodium adsorption efficiency and ash fusion characteristics during zhundong coal combustion. Journal of the Energy Institute 97:203–12. doi:10.1016/j.joei.2021.04.017.
  • Zi, J., D. Ma, X. Wang, Z. U. Rahman, H. Li, and S. Liao. 2020. Slagging behavior and mechanism of high-sodium–chlorine coal combustion in a full-scale circulating fluidized bed boiler. Journal of the Energy Institute 93 (6):2264–70. doi:10.1016/j.joei.2020.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.