79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Techno- thermo- economic- environmental assessment of parabolic trough collectors using hybrid nanofluids

, &
Pages 10682-10696 | Received 16 Jun 2023, Accepted 12 Aug 2023, Published online: 23 Aug 2023

References

  • Aghaei, A., G. A. Sheikhzadeh, M. Dastmalchi, and H. Forozande. 2015. Numerical investigation of turbulent forced-convective heat transfer of Al2O3–water nanofluid with variable properties in tube. Ain Shams Engineering Journal 6 (2):577–85. doi:10.1016/j.asej.2014.11.015.
  • Ajbar, W., J. Hernández, A. Parrales, and L. Torres. 2023. Thermal efficiency improvement of parabolic trough solar collector using different kinds of hybrid nanofluids. Case Studies in Thermal Engineering 42:102759. doi:10.1016/j.csite.2023.102759.
  • Allouhi, A., M. Benzakour Amine, R. Saidur, T. Kousksou, and A. Jamil. 2018. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Conversion and Management 155:201–17. doi:10.1016/j.enconman.2017.10.059.
  • Al-Oran, O., F. Lezsovits, and A. Aljawabrah. 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. Journal of Thermal Analysis and Calorimetry 140 (3):1579–96. doi:10.1007/s10973-020-09371-x.
  • Babar, H., and H. M. Ali. 2019. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids 281:598–633. doi:10.1016/j.molliq.2019.02.102.
  • Bahiraei, M., and S. Heshmatian. 2018. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Conversion and Management 168:357–70. doi:10.1016/j.enconman.2018.05.020.
  • Bellos, E., and C. Tzivanidis. 2018. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments 26:105–15. doi:10.1016/j.seta.2017.10.005.
  • Bellos, E., C. Tzivanidis, K. A. Antonopoulos, and I. Daniil. 2016. The use of gas working fluids in parabolic trough collectors – an energetic and exergetic analysis. Applied Thermal Engineering 109:1–14. doi:10.1016/j.applthermaleng.2016.08.043.
  • Bellos, E., C. Tzivanidis, and D. Tsimpoukis. 2017. Thermal enhancement of parabolic trough collector with internally finned absorbers. Solar Energy 157:514–31. doi:10.1016/j.solener.2017.08.067.
  • Bellos, E., C. Tzivanidis, and D. Tsimpoukis. 2018. Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids. Energy Conversion and Management 156:388–402. doi:10.1016/j.enconman.2017.11.051.
  • Bergman, T. L., T. L. Bergman, F. P. Incropera, D. P. Dewitt, and A. S. Lavine. 2011. Fundamentals of heat and mass transfer. John Wiley & Sons.
  • Brinkman, H. C. 1952. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics 20 (4):571–571. doi:10.1063/1.1700493.
  • Caliskan, H. 2017. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renewable and Sustainable Energy Reviews 69:488–92. doi:10.1016/j.rser.2016.11.203.
  • Che Sidik, N. A., M. Mahmud Jamil, W. M. A. Aziz Japar, and I. Muhammad Adamu. 2017. A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews 80:1112–22. doi:10.1016/j.rser.2017.05.221.
  • Duffie, J. A., W. A. Beckman, and N. Blair. 2020. Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
  • Ekiciler, R., K. Arslan, O. Turgut, and B. Kurşun. 2021. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. Journal of Thermal Analysis and Calorimetry 143 (2):1637–54. doi:10.1007/s10973-020-09717-5.
  • Faizal, M., R. Saidur, S. Mekhilef, and M. A. Alim. 2013. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management 76:162–68. doi:10.1016/j.enconman.2013.07.038.
  • Forristall, R. 2003. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, in. Golden, CO.(US): National Renewable Energy Lab.
  • Ghasemi, S. E., and A. A. Ranjbar. 2016. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study. Journal of Molecular Liquids 222:159–66. doi:10.1016/j.molliq.2016.06.091.
  • Hajatzadeh Pordanjani, A., S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, and S. Wongwises. 2019. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management 198:111886. doi:10.1016/j.enconman.2019.111886.
  • Kalogirou, S. A. 2013. Solar energy engineering: Processes and systems. Academic press.
  • Karimi, A., and M. Afrand. 2018. Numerical study on thermal performance of an air-cooled heat exchanger: Effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management 164:615–28. doi:10.1016/j.enconman.2018.03.038.
  • Korres, D., E. Bellos, and C. Tzivanidis. 2019. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Applied Thermal Engineering 149:366–76. doi:10.1016/j.applthermaleng.2018.12.077.
  • Kumar Singh, S., A. Kumar Tiwari, and H. K. Paliwal. 2023. A holistic review of MXenes for solar device applications: Synthesis, characterization, properties and stability. FlatChem 39:100493. doi:10.1016/j.flatc.2023.100493.
  • Maxwell, J. C. 1873. A treatise on electricity and magnetism. Oxford: Clarendon Press.
  • Menbari, A., A. A. Alemrajabi, and A. Rezaei. 2017. Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. Experimental Thermal & Fluid Science 80:218–27. doi:10.1016/j.expthermflusci.2016.08.023.
  • Michael Joseph Stalin, P., T. Arjunan, M. Matheswaran, H. Dolli, and N. Sadanandam. 2020. Energy, economic and environmental investigation of a flat plate solar collector with CeO 2/water nanofluid. Journal of Thermal Analysis and Calorimetry 139 (5):3219–33. doi:10.1007/s10973-019-08670-2.
  • Minea, A. A., and W. M. El-Maghlany. 2018. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy 120:350–64. doi:10.1016/j.renene.2017.12.093.
  • Olia, H., M. Torabi, M. Bahiraei, M. H. Ahmadi, M. Goodarzi, and M. R. Safaei. 2019. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-Art. Applied Sciences 9:463. doi:10.3390/app9030463.
  • Pak, B. C., and Y. I. Cho. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal 11 (2):151–70. doi:10.1080/08916159808946559.
  • Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy 74 (6):469–88. doi:10.1016/S0038-092X(03)00226-3.
  • Petukhov, B. S. 1970. Heat transfer and friction in turbulent pipe flow with variable physical properties. In Advances in heat transfer, Vol. 6, 503–64. Elsevier.
  • Said, Z., M. Ghodbane, B. Boumeddane, A. K. Tiwari, L. S. Sundar, C. Li, N. Aslfattahi, and E. Bellos. 2022. Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids. Solar Energy Materials and Solar Cells 239:111633. doi:10.1016/j.solmat.2022.111633.
  • Singh, S. K., A. K. Tiwari, and H. K. Paliwal. 2023. Performance augmentation strategy of parabolic trough collector by employing MXene-based solar absorbing coating. Process Safety and Environmental Protection 174:971–82. doi:10.1016/j.psep.2023.05.007.
  • Vahidinia, F., and H. Khorasanizadeh. 2021. Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study. Energy 228:120640. doi:10.1016/j.energy.2021.120640.
  • Vahidinia, F., H. Khorasanizadeh, and A. Aghaei. 2021. Comparative energy, exergy and CO2 emission evaluations of a LS-2 parabolic trough solar collector using Al2O3/SiO2-Syltherm 800 hybrid nanofluid. Energy Conversion and Management 245:114596. doi:10.1016/j.enconman.2021.114596.
  • Verma, S. K., A. K. Tiwari, S. Tiwari, and D. S. Chauhan. 2018. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy 167:231–41. doi:10.1016/j.solener.2018.04.017.
  • Wahab, A., A. Hassan, M. A. Qasim, H. M. Ali, H. Babar, and M. U. Sajid. 2019. Solar energy systems – potential of nanofluids. Journal of Molecular Liquids 289:111049. doi:10.1016/j.molliq.2019.111049.
  • Yılmaz, İ. H., A. Mwesigye, and T. T. Göksu. 2020. Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts. Sustainable Energy Technologies and Assessments 39:100696. doi:10.1016/j.seta.2020.100696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.