125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advanced Intelligent approach for state of charge estimation of lithium-ion battery

, ORCID Icon &
Pages 10661-10681 | Received 01 Jun 2023, Accepted 14 Aug 2023, Published online: 23 Aug 2023

References

  • Aman, R., M. Rizwan, and A. Kumar. 2023. Fault classification using deep learning based model and impact of dust accumulation on solar photovoltaic modules. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (2):4633–51. doi:10.1080/15567036.2023.2205859.
  • Awadallah, M. A., and B. Venkatesh. 2016. Accuracy improvement of SOC estimation in lithium-ion batteries. Journal of Energy Storage 6:95–104. doi:10.1016/J.EST.2016.03.003.
  • Bian, C., S. Yang, J. Liu, and E. Zio. 2022. Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and bidirectional recurrent neural networks. Applied Soft Computing 116:108401. doi:10.1016/J.ASOC.2021.108401.
  • Bockrath, S., A. Rosskopf, S. Koffel, S. Waldhor, K. Srivastava, and V. R. H. Lorentz (2019). State of charge estimation using recurrent neural networks with long short-term memory for lithium-ion batteries. IECON Proceedings (Industrial Electronics Conference), 2019 October, 2507–11. 10.1109/IECON.2019.8926815
  • Ceraolo, M., G. Lutzemberger, D. Poli, and C. Scarpelli. 2020. Luenberger-based state-of-charge evaluation and experimental validation with lithium cells. Journal of Energy Storage 30:101534. doi:10.1016/J.EST.2020.101534.
  • Chang, C., S. Wang, C. Tao, J. Jiang, Y. Jiang, and L. Wang. 2022. An improvement of equivalent circuit model for state of health estimation of lithium-ion batteries based on mid-frequency and low-frequency electrochemical impedance spectroscopy. Measurement 202:111795. doi:10.1016/J.MEASUREMENT.2022.111795.
  • Chemali, E., P. J. Kollmeyer, M. Preindl, R. Ahmed, and A. Emadi. 2018a. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Transactions on Industrial Electronics 65 (8):6730–39. doi:10.1109/TIE.2017.2787586.
  • Chemali, E., P. J. Kollmeyer, M. Preindl, R. Ahmed, and A. Emadi. 2018b. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Transactions on Industrial Electronics 65 (8):6730–39. doi:10.1109/TIE.2017.2787586.
  • Chemali, E., P. J. Kollmeyer, M. Preindl, and A. Emadi. 2018. State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. Journal of Power Sources 400:242–55. doi:10.1016/J.JPOWSOUR.2018.06.104.
  • Chemali, E., M. Preindl, P. Malysz, and A. Emadi. 2016. Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends. IEEE Journal of Emerging and Selected Topics in Power Electronics 4 (3):1117–34. doi:10.1109/JESTPE.2016.2566583.
  • Cui, S., X. Yong, S. Kim, S. Hong, and I. Joe. 2020. An LSTM-Based encoder-decoder model for state-of-charge estimation of lithium-ion batteries. Advances in Intelligent Systems & Computing 178–88. doi:10.1007/978-3-030-51965-0_15/COVER.
  • Dawei, Q., L. Zixuan, Y. Fan, F. Luyan, Z. Mingyue, and L. Haoxuan. 2022. State of charge estimation for the vanadium redox flow battery based on extended Kalman filter using modified parameter identification. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (4):9747–63. doi:https://doi.org/10.1080/15567036.2022.2136800.
  • Degla, A., M. Chikh, M. Mzir, and Y. Belabed. 2023. State of charge estimation for Li-ion battery based intelligent algorithms. Electrical Engineering 105 (2):1179–97. doi:10.1007/S00202-022-01728-9/FIGURES/13.
  • Divakaran, A. M., D. Hamilton, K. N. Manjunatha, and M. Minakshi. 2020. Design, development and thermal analysis of reusable li-ion battery module for future mobile and stationary applications. Energies 13 (6):1477. doi:10.3390/EN13061477.
  • Executive summary – Global EV Outlook 2023 – Analysis. IEA. https://www.iea.org/reports/global-ev-outlook-2023/executive-summary.
  • Fan, K., Y. Wan, and B. Jiang. 2022. State-of-charge dependent equivalent circuit model identification for batteries using sparse Gaussian process regression. Journal of Process Control 112:1–11. doi:10.1016/J.JPROCONT.2021.12.012.
  • Guo, S., and L. Ma. 2023. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation. Energy 263:125872. doi:10.1016/J.ENERGY.2022.125872.
  • Guo, Y., Z. Yang, K. Liu, Y. Zhang, and W. Feng. 2021. A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system. Energy 219:119529. doi:10.1016/J.ENERGY.2020.119529.
  • He, H., F. Sun, Z. Wang, C. Lin, C. Zhang, R. Xiong, J. Deng, X. Zhu, P. Xie, S. Zhang, et al. 2022. China’s battery electric vehicles lead the world: Achievements in technology system architecture and technological breakthroughs. Green Energy and Intelligent Transportation 1 (1):100020. doi:10.1016/J.GEITS.2022.100020.
  • Hossain Lipu, M. S., M. A. Hannan, T. F. Karim, A. Hussain, M. H. M. Saad, A. Ayob, M. S. Miah, and T. M. Indra Mahlia. 2021. Intelligent algorithms and control strategies for battery management system in electric vehicles: progress, challenges and future outlook. Journal of Cleaner Production 292:126044. doi:10.1016/J.JCLEPRO.2021.126044.
  • How, D. N. T., M. A. Hannan, M. S. H. Lipu, K. S. M. Sahari, P. J. Ker, and K. M. Muttaqi. 2020. State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach. IEEE Transactions on Industry Applications 56 (5):5565–74. doi:10.1109/TIA.2020.3004294.
  • Hussein, A. A. 2015. Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks. IEEE Transactions on Industry Applications 51 (3):2321–30. doi:10.1109/TIA.2014.2365152.
  • Jin, L., J. Tian, S. Gao, P. Xie, M. Akbarzadeh, T. Kalogiannis, M. Berecibar, Y. Lan, D. Hu, Y. Ding, et al. 2021. A novel hybrid thermal management approach towards high-voltage battery pack for electric vehicles. Energy Conversion and Management 247:114676. doi:10.1016/J.ENCONMAN.2021.114676.
  • Kiranyaz, S., O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 2021. 1D convolutional neural networks and applications: asurvey. Mechanical Systems and Signal Processing 151:107398. doi:10.1016/J.YMSSP.2020.107398.
  • Ko, M. S., K. Lee, J. K. Kim, C. W. Hong, Z. Y. Dong, and K. Hur. 2021. Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind Power forecasting. IEEE Transactions on Sustainable Energy 12 (2):1321–35. doi:10.1109/TSTE.2020.3043884.
  • Kollmeyer, P., and M. Skells. 2020. Turnigy Graphene 5000mAh 65C Li-ion battery data. 1. doi:10.17632/4FX8CJPRXM.1.
  • Kuang, D., and B. Xu. 2018. Predicting kinetic triplets using a 1d convolutional neural network. Thermochimica Acta 669:8–15. doi:10.1016/J.TCA.2018.08.024.
  • Kumar, D., and M. S. Mehata. 2022. Synthesis of diamagnetic ZnO nano-crystallites via sol-gel method and their photocatalytic activity. Indian Journal of Engineering & Materials Sciences 29 (4):437–44. doi:10.56042/IJEMS.V29I4.48695.
  • Kumar, D., M. K. Singh, and M. S. Mehata. 2022. Exploration of grown cobalt-doped zinc oxide nanoparticles and photodegradation of industrial dye. Materials Research Bulletin 150:150. doi:10.1016/J.MATERRESBULL.2022.111795.
  • Lecun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Liu, S., X. Dong, X. Yu, X. Ren, J. Zhang, and R. Zhu. 2022. A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter. Energy Reports 8:426–36. doi:10.1016/J.EGYR.2022.09.093.
  • Li, L., C. Wang, S. Yan, and W. Zhao. 2021. A combination state of charge estimation method for ternary polymer lithium battery considering temperature influence. Journal of Power Sources 484:229204. doi:10.1016/J.JPOWSOUR.2020.229204.
  • Li, S., C. Zhang, J. Du, X. Cong, L. Zhang, Y. Jiang, and L. Wang. 2022. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering. Green Energy and Intelligent Transportation 1 (1):100009. doi:10.1016/J.GEITS.2022.100009.
  • Ma, L., C. Hu, and F. Cheng. 2021. State of charge and state of Energy estimation for lithium-ion batteries based on a long short-term memory neural network. Journal of Energy Storage 37:102440. doi:10.1016/J.EST.2021.102440.
  • McCurlie, L., M. Preindl, and A. Emadi. 2017. Fast model predictive control for redistributive lithium-ion battery balancing. IEEE Transactions on Industrial Electronics 64 (2):1350–57. doi:10.1109/TIE.2016.2611488.
  • Musiak, M., and Z. Li (2021). Real time ultrasonic monitoring of solid-state lithium-ion cells in the frequency domain. 2021 IEEE International Conference on Prognostics and Health Management, ICPHM 2021. 10.1109/ICPHM51084.2021.9486632
  • Naguib, M., P. Kollmeyer, C. Vidal, and A. Emadi (2021a). Accurate surface temperature estimation of lithium-ion batteries using feedforward and recurrent artificial neural networks. 2021 IEEE Transportation Electrification Conference & Expo (ITEC), 52–57. 10.1109/ITEC51675.2021.9490043
  • Naguib, M., P. Kollmeyer, C. Vidal, and A. Emadi (2021b). Accurate surface temperature estimation of lithium-ion batteries using feedforward and recurrent artificial neural networks. 2021 IEEE Transportation Electrification Conference and Expo, ITEC 2021, 52–57. 10.1109/ITEC51675.2021.9490043
  • Pai, H. Y., Y. H. Liu, and S. P. Ye. 2023. Online estimation of lithium-ion battery equivalent circuit model parameters and state of charge using time-domain assisted decoupled recursive least squares technique. Journal of Energy Storage 62:106901. doi:10.1016/J.EST.2023.106901.
  • Peyal, H. I., S. M. Shahriar, A. Sultana, I. Jahan, and M. H. Mondol (2021). Detection of tomato leaf diseases using transfer learning architectures: a comparative analysis. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0, ACMI 2021. 10.1109/ACMI53878.2021.9528199
  • Ren, L., J. Dong, X. Wang, Z. Meng, L. Zhao, and M. J. Deen. 2021. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Transactions on Industrial Informatics 17 (5):3478–87. doi:10.1109/TII.2020.3008223.
  • Ren, Z., and C. Du. 2023a. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries. Energy Reports 9:2993–3021. doi:10.1016/J.EGYR.2023.01.108.
  • Ren, Z., and C. Du. 2023b. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries. Energy Reports 9:2993–3021. doi:10.1016/J.EGYR.2023.01.108.
  • Sheikh, S. S., F. A. Shah, S. O. Athar, and H. A. Khalid. 2023. A data-driven comparative analysis of lithium-ion battery. State of Health and Capacity Estimation 51 (1):1–11. doi:10.1080/15325008.2022.2145389.
  • Singh, P., C. Fennie, and D. Reisner. 2004. Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries. Journal of Power Sources 136 (2):322–33. doi:10.1016/J.JPOWSOUR.2004.03.035.
  • Song, Y., D. Liu, H. Liao, and Y. Peng. 2020. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries. Applied Energy 261:114408. doi:10.1016/J.APENERGY.2019.114408.
  • Srivastava, S., and S. Lessmann. 2018. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data. Solar Energy 162:232–47. doi:10.1016/J.SOLENER.2018.01.005.
  • Tian, J., R. Xiong, J. Lu, C. Chen, and W. Shen. 2022. Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning. Energy Storage Materials 50:718–29. doi:10.1016/J.ENSM.2022.06.007.
  • Tian, J., R. Xiong, and W. Shen. 2019. A review on state of health estimation for lithium-ion batteries in photovoltaic systems. ETransportation 2:100028. doi:10.1016/J.ETRAN.2019.100028.
  • Tian, J., R. Xiong, W. Shen, and J. Lu. 2021. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. Applied energy, 291. doi:10.1016/j.apenergy.2021.116812.
  • Wang, W., T. Hong, X. Xu, J. Chen, Z. Liu, and N. Xu. 2019. Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm. Applied Energy 248:217–30. doi:10.1016/J.APENERGY.2019.04.085.
  • Wang, Q., Z. Wang, L. Zhang, P. Liu, and L. Zhou (2022). A battery capacity estimation framework combining hybrid deep neural network and regional capacity calculation based on real-world operating data. IEEE Transactions on Industrial Electronics. 10.1109/TIE.2022.3229350
  • Wu, T., Y. Huang, Y. Xu, J. Jiang, S. Liu, and Z. Li. 2022. SOH prediction for lithium-ion battery based on improved support vector regression. International Journal of Green Energy. 20 (3):227–36. 2022.2027773. doi:10.1080/15435075.2022.2027773.
  • Xiao, B., Y. Liu, and B. Xiao. 2019. Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer. IEEE Access 7:54192–202. doi:10.1109/ACCESS.2019.2913078.
  • Xie, Y., S. Wang, G. Zhang, Y. Fan, C. Fernandez, and F. Blaabjerg. 2023. Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries. Applied Energy 336:120866. doi:10.1016/J.APENERGY.2023.120866.
  • Xing, Y., W. He, M. Pecht, and K. L. Tsui. 2014. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Applied Energy 113:106–15. doi:10.1016/J.APENERGY.2013.07.008.
  • Xiong, R., S. Ma, H. Li, F. Sun, and J. Li. 2020. Toward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuit. IScience 23 (4):101010. doi:10.1016/J.ISCI.2020.101010.
  • Xiong, Y., Y. Zhu, H. Xing, S. Lin, J. Xiao, C. Zhang, T. Yi, and Y. Fan. 2023. An improved state of charge estimation of lithium-ion battery based on a dual input model. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):575–88. doi:10.1080/15567036.2023.2172479.
  • Yang, F., W. Li, C. Li, and Q. Miao. 2019a. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 175:66–75. doi:10.1016/J.ENERGY.2019.03.059.
  • Yang, F., W. Li, C. Li, and Q. Miao. 2019b. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 175:66–75. doi:10.1016/J.ENERGY.2019.03.059.
  • Yao, S., Y. P. Xu, and E. Ramezani. 2021. Optimal long-term prediction of Taiwan’s transport energy by convolutional neural network and wildebeest herd optimizer. Energy Reports 7:218–27. doi:10.1016/J.EGYR.2020.12.034.
  • Zhang, Z., Z. Dong, H. Lin, Z. He, M. Wang, Y. He, X. Gao, and M. Gao. 2021. An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation. IEEE Access 9:11252–63. doi:10.1109/ACCESS.2021.3049944.
  • Zhao, R., P. J. Kollmeyer, R. D. Lorenz, and T. M. Jahns (2017). A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017 January, 5234–41. 10.1109/ECCE.2017.8096879
  • Zhou, X., J. Feng, and Y. Li. 2021. Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model. Energy Reports 7:5762–71. doi:10.1016/J.EGYR.2021.09.001.
  • Zou, Y., X. Hu, H. Ma, and S. E. Li. 2015. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources 273:793–803. doi:10.1016/J.JPOWSOUR.2014.09.146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.