70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous optimization of the hydrogen production rate and substrate conversion efficiency using a response surface methodology

, &
Pages 10633-10645 | Received 17 May 2023, Accepted 11 Aug 2023, Published online: 23 Aug 2023

References

  • Akroum, H., D. Akroum-Amrouche, and A. Aibeche. 2020. Modeling methods used in bioenergy production processes: A review. Advances in Computational Design 5:3323–47.
  • Akroum-Amrouche, D., N. Abdi, H. Lounici, and N. Mameri. 2011. Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6. Applied Energy 88 (6):2130–35. doi:10.1016/j.apenergy.2010.12.044.
  • Akroum-Amrouche, D., H. Akroum, and H. Lounici. 2023. Green hydrogen production by Rhodobacter sphaeroides. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):2862–80. doi:10.1080/15567036.2019.1666190.
  • Bagramyan, K., N. Mnatsakanyan, A. Poladian, A. Vassilian, and A. Trchounian. 2002. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Letters 516 (1–3):172–78. doi:10.1016/S0014-5793(02)02555-3.
  • Bai, R., W. Chu, Z. Qiao, P. Lu, K. Jiang, Y. Xu, J. Yang, T. Gao, F. Xu, and H. Zhao. 2023. Metabolic regulation of NADH supply and hydrogen production in Enterobacter aerogenes by multi-gene engineering. International Journal of Hydrogen Energy 48 (3):909–20. doi:10.1016/j.ijhydene.2022.10.015.
  • Bakonyi, P., N. Nemesto´thy, E. Lo¨vitusz, and K. Be´lafi-Bako. 2011. Application of plackett–Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE). International Journal of Hydrogen Energy 36 (21):13949–54. doi:10.1016/j.ijhydene.2011.03.062.
  • Bakonyi, P., N. Nemestóthy, and K. Bélafi-Bakó. 2012. Comparative study of various E. coli strains for biohydrogen production applying response surface methodology. Scientific World Journal ID 819793:1–7. doi:10.1100/2012/819793.
  • Banu, J. R., S. Kavitha, R. Y. Kannah, R. R. Bhosale, and G. Kumar. 2020. Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route. Bioresource Technology 298:122378. doi:10.1016/j.biortech.2019.122378.
  • Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy 31 (11):1504–08. doi:10.1016/j.ijhydene.2006.06.016.
  • Bora, A., K. Mohanrasu, T. A. Swetha, V. Ananthi, R. Sindhu, N. T. L. Chi, A. Pugazhendhi, A. Arun, and T. Mathimani. 2022. Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production. Fuel 328:125269. doi:10.1016/j.fuel.2022.125269.
  • Cheng, D., H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, S. Zhang, S. Deng, D. An, and N. B. Hoang. 2022. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. Bioresource Technology 346:126588. doi:10.1016/j.biortech.2021.126588.
  • Chittibabu, G., K. Nath, and D. Das. 2006. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochemistry 41 (3):682–88. doi:10.1016/j.procbio.2005.08.020.
  • Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy 27 (2):149–56. doi:10.1016/S0360-3199(01)00102-1.
  • Fang, H., H. Zhu, and T. Zhang. 2006. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 31 (15):2223–30. doi:10.1016/j.ijhydene.2006.03.005.
  • Ghosh, D., and P. C. Hallenbeck. 2010. Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Bioresource Technology 101 (6):1820–25. doi:10.1016/j.biortech.2009.10.020.
  • Ginkel, S. V., S. Sung, and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. International Journal of Hydrogen Energy 23:559–63.
  • Hasany, M., M. M. Mardanpour, and S. Yaghmaei. 2016. Biocatalysts in microbial electrolysis cells: A review. International Journal of Hydrogen Energy 41 (3):1477–93. doi:10.1016/j.ijhydene.2015.10.097.
  • Hu, J., H. Yang, X. Wang, W. Cao, and L. Guo. 2020. Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides. International journal of hydrogen energy 45:9451–58. doi:10.1016/j.ijhydene.2020.01.24.
  • Jo, J. H., D. S. Lee, D. Park, W. Choe, and J. M. Park. 2008. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresource Technol 99 (6):2061–66. doi:10.1016/j.biortech.2007.04.027.
  • Junyapoon, S., W. Buala, and S. Phunpruch. 2011. Hydrogen production with Escherichia Coli isolated from municipal sewage sludge. Thammasat International Journal of Science and Technology 16:9–15.
  • Kim, J. Y. H., B. H. Jo, Y. H. Cho, and H. J. Cha. 2009. Biohydrogen production in Escherichia coli BL21 using H2 producing ability of recombinant E. coli NiFe-hydrogenase 1. Journal of Bioscience and Bioengineering 108:S169. doi:10.1016/j.jbiosc.2009.08.458.
  • Kim, S., E. Seol, Y. K. Oh, G. Y. Wang, and S. Park. 2009. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. International Journal of Hydrogen Energy 34 (17):7417–27. doi:10.1016/j.ijhydene.2009.05.053.
  • Laurinavichene, T., and A. Tsygankov. 2015. Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 40 (41):1–8. doi:10.1016/j.ijhydene.2015.08.086.
  • Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. Journal of Chemical Technology & Biotechnology 77 (6):694–98. doi:10.1002/jctb.623.
  • Lopez-Hidalgo, A. M., A. Sánchez, and A. De León-Rodríguez. 2017. Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate. Fuel 188:19–27. doi:10.1016/j.fuel.2016.10.022.
  • Redwood, M. D., and L. E. Macaskie. 2006. A two-stage, two-organism process for biohydrogen from glucose. International Journal of Hydrogen Energy 31 (11):1514–21. doi:10.1016/j.ijhydene.2006.06.018.
  • Regueira-Marcos, L., O. García-Depraect, and R. Muñoz. 2023. Elucidating the role of pH and total solids content in the co-production of biohydrogen and carboxylic acids from food waste via lactate-driven dark fermentation. Fuel 338:127238. doi:10.1016/j.fuel.2022.127238.
  • Rossmann, R., G. Sawers, and A. Bock. 1991. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: Definition of the formate regulon. Molecular Microbiology 5 (11):2807–14. doi:10.1111/j.1365-2958.1991.tb01989.x.
  • Seol, E., S. Kim, S. M. Raj, and S. Park. 2008. Comparison of hydrogen-production capability of four different Enterobacteriaceae strains under growing and non-growing conditions. International Journal of Hydrogen Energy 33 (19):5169–75. doi:10.1016/j.ijhydene.2008.05.007.
  • Seppa, J. J., J. A. Puhakka, O. Yli-Harja, M. T. Karp, and V. Santala. 2011. Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and co-cultures. International Journal of Hydrogen Energy 36 (17):10701–08. doi:10.1016/j.ijhydene.2011.05.189.
  • Taha, R. H., T. H. Taha, M. A. Elsherif, and A. E. Mansy. 2021. Successive application of physicochemical and enzymatic treatments of office paper waste for the production of bioethanol with possible using of carbon dioxide as an indicator for the determination of the bioethanol concentration. Journal of Biobased Materials and Bioenergy 15 (6):790–98. doi:10.1166/jbmb.2021.2144.
  • Vasmara, C., and R. Marchetti. 2017. Initial pH influences in-batch hydrogen production from scotta permeate. International Journal of Hydrogen Energy 42 (21):14400–08. doi:10.1016/j.ijhydene.2017.04.067.
  • Wang, J., and W. Wan. 2008. Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33 (20):5392–97. doi:10.1016/j.ijhydene.2008.07.010.
  • Woon, J. M., K. S. Khoo, A. A. AL-Zahrani, M. M. Alanazi, J. W. Lim, C. K. Cheng, N. T. Sahrin, F. M. Ardo, S. Yi-Ming, K.-S. Lin, et al. 2023. Epitomizing biohydrogen production from microbes: Critical challenges vs opportunities. Environmental Research 227:115780. doi:10.1016/j.envres.2023.115780.
  • Yoshida, T., H. Nishimura, M. Kawaguchi, and H. Y. Inui. 2007. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Applied Microbiology and Biotechnology 74 (4):754–60. doi:10.1007/s00253-006-0721-y.
  • Zhang, C., G. Wang, S. Ma, H. Huang, Y. Ma, and Z. Li. 2021. Enhancing Hydrogen productivity of photosynthetic bacteria from the formulated carbon source by mixing xylose with glucose. Applied Biochemistry and Biotechnology 193 (12):3996–4017. doi:10.1007/s12010-021-03708-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.