183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Leakage and diffusion of high-pressure gas pipeline in soil and atmosphere: experimental and numerical study

ORCID Icon, , &
Pages 10827-10842 | Received 12 Dec 2022, Accepted 25 Jul 2023, Published online: 30 Aug 2023

References

  • Bagheri, M., and A. Sari. 2022. Study of natural gas emission from a hole on underground pipelines using optimal design-based CFD simulations: Developing comprehensive soil classified leakage models. Journal of Natural Gas Science & Engineering 102:104583. doi:10.1016/j.jngse.2022.104583.
  • Bezaatpour, J., E. Fatehifar, and A. Rasoulzadeh. 2020. CFD investigation of natural gas leakage and propagation from buried pipeline for anisotropic and partially saturated multilayer soil. Journal of Cleaner Production 277:277. doi:10.1016/j.jclepro.2020.123940.
  • Biezma, M. V., D. Agudo, and G. Barron. 2018. A Fuzzy Logic method: Predicting pipeline external corrosion rate. International Journal of Pressure Vessels and Piping 163:55–62. doi:10.1016/j.ijpvp.2018.05.001.
  • Bonnaud, C., V. Cluzel, P. Corcoles, J.-P. Dubois, V. Louvet, M. Maury, A. Narbonne, H. Orefice, A. Perez, J. Ranty, et al. 2018. Experimental study and modelling of the consequences of small leaks on buried transmission gas pipeline. Journal of Loss Prevention in the Process Industries 55:303–12. doi:10.1016/j.jlp.2018.06.010.
  • BP Statistical Review of World Energy. 2021. www.bp.com>
  • Bu, F., Y. Liu, S. Chen, J. Wu, B. Guan, N. Zhang, X. Lin, L. Liu, T. Cheng, Z. Shi, et al. 2022. Real scenario analysis of buried natural gas pipeline leakage based on soil-atmosphere coupling. International Journal of Pressure Vessels and Piping 199:104713. doi:10.1016/j.ijpvp.2022.104713.
  • Chamindu Deepagoda, T. K. K., K. M. Smits, and C. M. Oldenburg. 2016. Effect of subsurface soil moisture variability and atmospheric conditions on methane gas migration in shallow subsurface. International Journal of Greenhouse Gas Control 55:105–17. doi:10.1016/j.ijggc.2016.10.016.
  • Cho, Y., B. A. Ulrich, D. J. Zimmerle, and K. M. Smits. 2020. Estimating natural gas emissions from underground pipelines using surface concentration measurements☆. Environmental Pollution 267:115514. doi:10.1016/j.envpol.2020.115514.
  • Ebrahimi-Moghadam, A., M. Farzaneh-Gord, and M. Deymi-Dashtebayaz. 2016. Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines. Journal of Natural Gas Science & Engineering 34:185–96. doi:10.1016/j.jngse.2016.06.062.
  • EGIG. 2020. 11th Report of European Gas Pipeline Incident Data Group[R]. EGIG.
  • GB/T 50123. 2019. Standard for geotechnical testing method. China: China Planning Press.
  • Griebenow, G., and M. Mears. 1989. Leak detection implementation: Modeling and tuning Methods. Journal of Energy Resources Technology 111 (2):66–71. doi:10.1115/1.3231407.
  • Hendrick, M. F., R. Ackley, B. Sanaie-Movahed, X. Tang, and N. G. Phillips. 2016. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments. Environmental Pollution 213:710–16. doi:10.1016/j.envpol.2016.01.094.
  • Li, Y., X. Qian, S. Zhang, J. Sheng, L. Hou, and M. Yuan. 2023. Assessment of gas explosion risk in underground spaces adjacent to a gas pipeline. Tunnelling and Underground Space Technology 131:131. doi:10.1016/j.tust.2022.104785.
  • Liu, Y., Q. Cheng, Y. Gan, Y. Wang, Z. Li, and J. Zhao. 2019. Multi-objective optimization of energy consumption in crude oil pipeline transportation system operation based on exergy loss analysis. Neurocomputing 332:100–10. doi:10.1016/j.neucom.2018.12.022.
  • Liu, C., Y. Liao, J. Liang, Z. Cui, and Y. Li. 2021. Quantifying methane release and dispersion estimations for buried natural gas pipeline leakages. Process Safety and Environmental Protection 146:552–63. doi:10.1016/j.psep.2020.11.031.
  • Li, S. Y., J. Zhang, D. Yan, P. Wang, Q. Huang, X. Zhao, Y. Cheng, Q. Zhou, N. Xiang, T. Dong, et al. 2016. Leak detection and location in gas pipelines by extraction of cross spectrum of single non-dispersive guided wave modes. Journal of Loss Prevention in the Process Industries 44:255–62. doi:10.1016/j.jlp.2016.09.021.
  • Magoules, F. 2011. Computational Fluid Dynamics[m]. Taylor and Francis;CRC Press. doi:10.1201/b11033.
  • Okamoto, H. A., and Y. B. Gomi. 2011. Empirical research on diffusion behavior of leaked gas in the ground(Article). Journal of Loss Prevention in the Process Industries 24 (5):531–40. doi:10.1016/j.jlp.2011.01.007.
  • Parvini, M., and E. Gharagouzlou. 2015. Gas leakage consequence modeling for buried gas pipelines(Article). Journal of Loss Prevention in the Process Industries 37:110–18. doi:10.1016/j.jlp.2015.07.002.
  • Pereira, T. W. C., F. B. Marques, F. D. A. R. Pereira, D. D. C. Ribeiro, and S. M. S. Rocha. 2016. The influence of the fabric filter layout of in a flow mass filtrate. Journal of Cleaner Production 111 (Part A):117–24. doi:10.1016/j.jclepro.2015.09.070.
  • Pesic, R., T. Kaludjerovic-Radoicic, N. Boskovic-Vragolovic, Z. Arsenijevic, and Z. Grbavcic. 2015. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures. Chemical Industry & Chemical Engineering Quarterly 21 (3):419–27. doi:10.2298/ciceq140618044p.
  • Shen, Z., J. Lang, M. Li, S. Mao, F. Hu, and B. Xuan. 2022. Impact of inlet boundary number and locations on gas diffusion and flow in a typical chemical industrial park near uneven terrain. Process Safety and Environmental Protection 159:281–93. doi:10.1016/j.psep.2022.01.004.
  • Wang, X., Y. Tan, T. Zhang, R. Xiao, K. Yu, and J. Zhang. 2021. Numerical study on the diffusion process of pinhole leakage of natural gas from underground pipelines to the soil. Journal of Natural Gas Science & Engineering 87:103792. doi:10.1016/j.jngse.2020.103792.
  • Xie, S., Wu, Z., Lu, L., Yao, W., and Bai, G. 2012. Experimental research on diffusion behavior of leaked gas from underground gas pipeline. Journal of Safety Science & Technology 8 (4): 106–13. (in Chinese).
  • Xu, P., Pan, D., Yuan, X., Zhang, Z., and Xiong, Y. 2022. Progress of research on leakage diffusion of gas pipeline. Oil & Gas Storage and Transportation 41 (1): 21–28. in Chinese.
  • Yan, Y., X. Dong, and J. Li. 2015. Experimental study of methane diffusion in soil for an underground gas pipe leak. Journal of Natural Gas Science & Engineering 27:82–89. doi:10.1016/j.jngse.2015.08.039.
  • Yuan, F., Y. Zeng, R. Luo, and B. C. Khoo. 2020. Numerical and experimental study on the generation and propagation of negative wave in high-pressure gas pipeline leakage. Journal of Loss Prevention in the Process Industries 65:65. doi:10.1016/j.jlp.2020.104129.
  • Zhou, Z., J. Zhang, X. Huang, J. Zhang, and X. Guo. 2020. Trend of soil temperature during pipeline leakage of high-pressure natural gas: Experimental and numerical study. Measurement 153:153. doi:10.1016/j.measurement.2019.107440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.