142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the effect of photovoltaic louver shading and lighting control system on building energy consumption and daylighting

ORCID Icon, , , , &
Pages 10873-10889 | Received 27 Apr 2023, Accepted 18 Aug 2023, Published online: 01 Sep 2023

References

  • Agency, I. E. 2021. World energy investment. 01.
  • Barzegar Ganji, H.; D. M. Utzinger; D. E. 2020. Bradley Create and Validate Hybrid Ventilation components in simulation using Grasshopper and Python in Rhinoceros. Proceedings of the Proceedings of Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 4345–52.
  • Bellia, L., A. Pedace, and F. Fragliasso. 2015. Dynamic daylight simulations: Impact of weather file’s choice - ScienceDirect. Solar Energy 117:224–35. doi:10.1016/j.solener.2015.05.002.
  • Boscarino, G., and M. Moallem. 2016. Daylighting control and simulation for LED-based energy-efficient lighting systems. IEEE Transactions on Industrial Informatics 12 (1):301–09. doi:10.1109/TII.2015.2509423.
  • Building on the past and starting a new jo urney to address climate change globally. Accessed December 12. Available online: http://www.gov.cn/gongbao/content/2020/content_5570055.htm.
  • Caicedo, D., S. L. Ms, and A. Pandharipande. 2016. Smart lighting control with workspace and ceiling sensors. Lighting Research & Technology 49 (4):446–60. doi:10.1177/1477153516629531.
  • Carlucci, S., F. Causone, F. De Rosa, and L. Pagliano. 2015. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews 47:1016–33. doi:10.1016/j.rser.2015.03.062.
  • Chen, H., B. Cai, H. Yang, Y. Wang, and J. Yang. 2022. Study on natural lighting and electrical performance of louvered photovoltaic windows in hot summer and cold winter areas. Energy and Buildings 271. doi:10.1016/j.enbuild.2022.112313.
  • Chi, D. A., D. Moreno, and J. Navarro. 2018. Correlating daylight availability metric with lighting, heating and cooling energy consumptions. Building and Environment 132:170–80. doi:10.1016/j.buildenv.2018.01.048.
  • Das, S. K., D. Verma, S. Nema, and R. K. Nema. 2017. Shading mitigation techniques: State-of-the-art in photovoltaic applications. Renewable and Sustainable Energy Reviews 78:369–90. doi:10.1016/j.rser.2017.04.093.
  • Efficiency, C.A.O.B.E. China Building Energy Consumption Research Report 2020. 2021.
  • Energy Star. 2023. What is Energy Use Intensity (EUI)? Energy Star. https://www.energystar.gov/buildings/benchmark/understand_metrics/what_eui.
  • Feng, K., W. Lu, and Y. Wang. 2019. Assessing environmental performance in early building design stage: An integrated parametric design and machine learning method. Sustainable Cities and Society 50. doi:10.1016/j.scs.2019.101596.
  • General specifications for building energy efficiency and renewable energy use. 2021. GB 55015-2021.
  • Guideline, A. 2014. Measurement of energy, demand, and water savings. ASHRAE Guidel 4:1–150.
  • Huo, H., W. Xu, A. Li, Y. Lv, and C. Liu. 2021. Analysis and optimization of external venetian blind shading for nearly zero-energy buildings in different climate regions of China. Solar Energy 223:54–71. doi:10.1016/j.solener.2021.05.046.
  • IEA. 2022. Global energy review: CO2 Emissions in 2021. Paris: IEA.
  • Jabeur, R., N. Ouaaline, and A. Lakrim. 2021. A Fuzzy Logic controller Controls a Smart lighting system for energy savings. Proceedings of the 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco, 1–6.
  • Khidmat, R. P., H. Fukuda, B. Qingsong, M. Paramita, A. Hariyadi, and A. Hariyadi. 2022. Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. Journal of Building Engineering 51:104241. doi:10.1016/j.jobe.2022.104241.
  • Kruisselbrink, T. W., R. Dangol, and E. J. van Loenen. 2020. A comparative study between two algorithms for luminance-based lighting control. Energy and Buildings 228. doi:10.1016/j.enbuild.2020.110429.
  • Kunwar, N., K. S. Cetin, U. Passe, X. Zhou, and Y. Li. 2019. Full-scale experimental testing of integrated dynamically-operated roller shades and lighting in perimeter office spaces. Solar Energy 186:17–28. doi:10.1016/j.solener.2019.04.069.
  • Lakhdari, K., L. Sriti, and B. Painter. 2021. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Building and Environment 204. doi:10.1016/j.buildenv.2021.108173.
  • Liu, J., G. Bi, G. Gao, and L. Zhao. 2023. Optimal design method for photovoltaic shading devices (PVSDs) by combining geometric optimization and adaptive control model. Journal of Building Engineering 69. doi:10.1016/j.jobe.2023.106101.
  • Long, W., X. Chen, Q. Ma, X. Wei, and Q. Xi. 2022. An evaluation of the PV integrated Dynamic Overhangs based on parametric performance design method: A case study of a Student Apartment in China. Sustainability 14 (13):7808. doi:10.3390/su14137808.
  • Mardaljevic, J. 2015. Climate-based daylight modelling and its discontents. CIBSE Technologies Symposium, London, 1–12.
  • Marzouk, M. A., and M. Atwa. 2020. Daylighting and energy performance of PVSDs. Scientific Research Journal 8 (8):69–75. doi:10.31364/SCIRJ/v8.i8.2020.P0820796.
  • Merghani, A. H., and S. A. Bahloul. 2016. Comparison between Radiance daylight simulation Software results andMeasured on-site data. Journal of Building and Road Research 20:20. doi:10.53332/jbrr.v20i.588.
  • Noorzai, E., P. Bakmohammadi, and M. A. Garmaroudi. 2022. Optimizing daylight, energy and occupant comfort performance of classrooms with photovoltaic integrated vertical shading devices. Architectural Engineering and Design Management 19 (4):1–25. doi:10.1080/17452007.2022.2080173.
  • Pandharipande, A., and D. Caicedo. 2015. Smart indoor lighting systems with luminaire-based sensing: A review of lighting control approaches. Energy and Buildings 104:369–77. doi:10.1016/j.enbuild.2015.07.035.
  • Pilechiha, P., M. Mahdavinejad, F. Pour Rahimian, P. Carnemolla, and S. Seyedzadeh. 2020. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Applied Energy 261. doi:10.1016/j.apenergy.2019.114356.
  • Reinhart, C. F., J. Mardaljevic, and Z. Rogers. 2006. Dynamic daylight performance Metrics for Sustainable building design. LEUKOS 3:7–31. doi:10.1582/LEUKOS.2006.03.01.001.
  • Sadatifar, S., and E. Johlin. 2022. Multi-objective optimization of building integrated photovoltaic solar shades. Solar Energy 242:191–200. doi:10.1016/j.solener.2022.07.007.
  • Settino, J., C. Carpino, S. Perrella, and N. Arcuri. 2020. Multi-objective analysis of a fixed solar shading system in different climatic areas. Energies 13 (12):3249. doi:10.3390/en13123249.
  • Shen, D., C. Ning, Y. Wang, W. Duan, and P. Duan. 2022. Smart lighting control system based on fusion of monocular depth estimation and multi-object detection. Energy and Buildings 277. doi:10.1016/j.enbuild.2022.112485.
  • Shi, S., J. Sun, M. Liu, X. Chen, W. Gao, and Y. Song. 2022. Energy-saving potential Comparison of different photovoltaic integrated shading devices (PVSDs) for Single-Story and Multi-Story buildings. Energies 15 (23):9196. doi:10.3390/en15239196.
  • Skandalos, N., and D. Karamanis. 2021. An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones. Applied Energy 295. doi:10.1016/j.apenergy.2021.117017.
  • Taveres-Cachat, E., K. Bøe, G. Lobaccaro, F. Goia, and S. Grynning. 2017. Balancing competing parameters in search of optimal configurations for a fix louvre blade system with integrated PV. Energy Procedia 122:607–12. doi:10.1016/j.egypro.2017.07.357.
  • Taveres-Cachat, E., G. Lobaccaro, F. Goia, and G. Chaudhary. 2019. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Applied Energy 247:731–44. doi:10.1016/j.apenergy.2019.04.033.
  • Technical standards for near-zero energy buildings. 2019. GB/T 51350-2019.
  • Wagiman, K. R., M. N. Abdullah, M. Y. Hassan, N. H. Mohammad Radzi, A. H. Abu Bakar, and T. C. Kwang. 2020. Lighting system control techniques in commercial buildings: Current trends and future directions. Journal of Building Engineering 31. doi:10.1016/j.jobe.2020.101342.
  • Williams, A., B. Atkinson, K. Garbesi, F. Page, and E. Rubinstein. 2012. A meta-analysis of energy savings from lighting Controls in commercial buildings. Office of Scientific & Technical Information Technical Reports 8 (3):161–80. doi:10.1582/LEUKOS.2012.08.03.001.
  • Xu, L., Y. Pan, Y. Yao, D. Cai, Z. Huang, and N. Linder. 2017. Lighting energy efficiency in offices under different control strategies. Energy and Buildings 138:127–39. doi:10.1016/j.enbuild.2016.12.006.
  • Yu, G., H. Yang, D. Luo, X. Cheng, and M. K. Ansah. 2021. A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds. Renewable and Sustainable Energy Reviews 149. doi:10.1016/j.rser.2021.111355.
  • Zeraatpisheh, M., R. Arababadi, and M. Saffari Pour. 2018. Economic analysis for Residential solar PV systems based on different demand Charge Tariffs. Energies 11 (12):3271. doi:10.3390/en11123271.
  • Zhang, X., S.-K. Lau, S. S. Y. Lau, and Y. Zhao. 2018. Photovoltaic integrated shading devices (PVSDs): A review. Solar Energy 170:947–68. doi:10.1016/j.solener.2018.05.067.
  • Zhou, X., D. Yan, T. Hong, and X. Ren. 2015. Data analysis and stochastic modeling of lighting energy use in large office buildings in China. Energy and Buildings 86:275–87. doi:10.1016/j.enbuild.2014.09.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.