523
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recycling technology of end-of-life photovoltaic panels: a review

ORCID Icon, , , &
Pages 10890-10908 | Received 17 Feb 2023, Accepted 19 Aug 2023, Published online: 31 Aug 2023

References

  • Adamo, I., F. Ferella, M. Gastaldi, M. Nicolò, and R. Paolo. 2023. Circular solar: Evaluating the profitability of a photovoltaic panel recycling plant. Waste Management & Research 41 (6):1144–54. doi:10.1177/0734242X221149327.
  • Amado, I., M. Michela, and R. Paolo. 2017. Economic feasibility for recycling of waste crystalline silicon photovoltaic modules. International Journal of Photoenergy 2017:1–6. doi:10.1155/2017/4184676.
  • Andres, U. 2010. Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing 97 (1–4):31–38. doi:10.1016/j.minpro.2010.07.004.
  • Bauwens, T., D. Schraven, E. Drewing, J. Radtke, L. Holstenkamp, B. Gotchev, and O. Yildiz. 2022. Conceptualizing community in energy systems: A systematic review of 183 definitions. Renewable and Sustainable Energy Reviews 156:111999. doi:10.1016/j.rser.2021.111999.
  • Berger, W., F. Simon, K. Weimann, and E. Alsema. 2010. A novel approach for the recycling of thin film photovoltaic modules. Resources Conservation & Recycling 54 (10):711–18. doi:10.1016/j.resconrec.2009.12.001.
  • Bogust, P., and Y. Smith. 2020. Physical separation and beneficiation of end-of-life photovoltaic panel Materials: Utilizing temperature swings and particle shape. JOM: The Journal of the Minerals, Metals & Materials Society 72 (7):2615–23. doi:10.1007/s11837-020-04197-2.
  • Bohland, J., and I. Anisimov, 1997. Possibility of recycling silicon PV modules. IEEE Photovoltaic Specialists Conference, 1173–75. doi:10.1109/PVSC.1997.654298.
  • Bothe, K., R. Krain, R. Falster, and R. Sinton. 2010. Determination of the bulk lifetime of bare multi-crystalline silicon wafers. Progress in Photovoltaics: Research and Applications 18 (3):204–08. doi:10.1002/pip.975.
  • Bustamante, M., and G. Gaustad. 2014. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics. Applied Energy 123:397–414. doi:10.1016/j.apenergy.2014.01.065.
  • Camalan, M. 2020. Correlating common breakage modes with impact breakage and ball milling of cement clinker and chromite. International Journal of Mining Science and Technology 30 (6):901–08. doi:10.1016/j.ijmst.2020.03.017.
  • Ceglia, F., P. Esposito, A. Faraudello, E. Marrasso, P. Rossi, and M. Sasso. 2022. An energy, environmental, management and economic analysis of energy efficient system towards renewable energy community: The case study of multi-purpose energy community. Journal of Cleaner Production 369:133269. doi:10.1016/j.jclepro.2022.133269.
  • Cucchiella, F., I. Adamo, and P. Rosa. 2015. End-of-life of used photovoltaic modules: A financial analysis. Renewable & Sustainable Energy Reviews 47:552–61. doi:10.1016/j.rser.2015.03.076.
  • Deng, R., N. Chang, Z. Ouyang, and C. Chong. 2019. A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews 109:532–50. doi:10.1016/j.rser.2019.04.020.
  • Dias, P., M. Benevit, and H. Veit. 2016a. Photovoltaic solar panels of crystalline silicon: Characterization and separation. Waste Management Research 34 (3):235–45. doi:10.1177/0734242X15622812.
  • Dias, P., S. Javimczik, M. Benevit, and H. Veit. 2016b. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management 60:716–22. doi:10.1016/j.wasman.2016.08.036.
  • Dias, P., S. Javimczik, M. Benevit, H. Veit, and A. Bernardes. 2016c. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management 57:220–25. doi:10.1016/j.wasman.2016.03.016.
  • Dias, P., L. Schmidt, L. Gomes, A. Bettanin, H. Veit, and A. Bernardes. 2018. Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. Journal of Sustainable Metallurgy 4 (2):176–86. doi:10.1007/s40831-018-0173-5.
  • Doi, T., I. Tsuda, H. Unagida, A. Murata, K. Sakuta, and K. Kurokawa. 2001. Experimental study on PV module recycling with organic solvent method. Solar Energy Materials and Solar Cells 67 (1–4):397–403. doi:10.1016/S0927-0248(00)00308-1.
  • Farrell, C., A. Osman, J. Harrison, A. Vennard, A. Murphy, R. Doherty, M. Russell, and V. Kumaravel. 2021. Pyrolysis kinetic modeling of a poly (ethylene-co-vinyl acetate) encapsulant found in waste photovoltaic modules. Industrial & Engineering Chemistry Research 60 (37):13492–504. doi:10.1021/acs.iecr.1c01989.
  • Frisson, L., K. Lieten, T. Bruton, K. Declercq, J. Szlufcik, H. de Moor, M. Goris, A. Benali, and A. Aceves, 2000. Recent improvements in industrial PV module recycling. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC), Glasgow, Glasgow, 2160–63.
  • Fthenakis, V. 2000. End-of-life Management and recycling of PV modules. Energy Policy 28 (14):1051–58. doi:10.1016/S0301-4215(00)00091-4.
  • Fthenakis, V. 2004. Life cycle impact analysis of cadmium in CdTe PV production. Renewable & Sustainable Energy Reviews 8 (4):303–34. doi:10.1016/j.rser.2003.12.001.
  • Fthenakis, V., and W. Wang. 2006. Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap. Progress in Photovoltaics: Research and Applications 14 (4):363–71. doi:10.1002/pip.676.
  • Giacchetta, G., M. Leporini, and B. Marchetti. 2013. Evaluation of the environmental benefits of new high value process for the management of the end of life of thin film photovoltaic modules. Journal of Cleaner Production 51:214–24. doi:10.1016/j.jclepro.2013.01.022.
  • Global market Outlook for solar Power 2021-2025. 2021. Solar Power Europe, Brussels, Belgium. Brussels, Belgium: Solar Power Europe.
  • Gonen, C., and E. Kaplanoglu. 2019. Environmental and economic evaluation of solar panel wastes recycling. Waste Management & Research 37 (4):1–7. doi:10.1177/0734242X19826331.
  • Granata, G., F. Pagnanelli, E. Moscardini, T. Havlik, and L. Toro. 2014. Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells 123:239–48. doi:10.1016/j.solmat.2014.01.012.
  • Gui, E., and I. Macgill. 2017. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Research & Social Science 35:94–107. doi:10.1016/j.erss.2017.10.019.
  • Guo, M., Y. Zhao, J. Guo, E. Byambajav, G. Yan, Z. Zhang, P. Zhao, Z. Ni, and B. Zhang. 2022. Removal behavior and mechanism of AAEMs and Fe in Zhundong coal under acidic ionic liquid system. Fuel 320:123997. doi:10.1016/j.fuel.2022.123997.
  • Gustafsson, A., M. Foreman, and C. Ekberg. 2014. Recycling of high purity selenium from CIGS solar cell waste materials. Waste Management 34 (10):1775–82. doi:10.1016/j.wasman.2013.12.021.
  • Gustafsson, A., B. Steenari, and C. Ekberg. 2015. Recycling of CIGS solar cell waste Materials: Separation of copper, indium, and gallium by high-temperature chlorination reaction with ammonium chloride. Separation Science & Technology 50 (1):2415–25. doi:10.1080/01496395.2015.1053569.
  • Huang, W., W. Shin, L. Wang, W. Sun, and M. Tao. 2017. Strategy and technology to recycle wafer-silicon solar modules. Solar Energy 144:22–31. doi:10.1016/j.solener.2017.01.001.
  • Huang, B., J. Zhao, J. Chai, B. Xue, F. Zhao, and X. Wang. 2017. Environmental influence assessment of china’s multi-crystalline silicon (multi-si) photovoltaic modules considering recycling process. Solar Energy 143:132–41. doi:10.1016/j.solener.2016.12.038.
  • Hunt, A., A. Matharu, A. King, and J. Clark. 2015. The importance of elemental sustainability and critical element recovery. Green Chemistry. doi:10.1039/C5GC90019K.
  • IEA International ergonomics Association. 2021.
  • Jeongeun, S., P. Jongsung, and P. Nochang. 2017. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells 162:1–6. doi:10.1016/j.solmat.2016.12.038.
  • Jing, T., and S. Yu. 2015. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells 141:108–24. doi:10.1016/j.solmat.2015.05.005.
  • Jung, B., J. Park, D. Seo, and N. Park. 2016. Sustainable System for raw-metal recovery from crystalline silicon solar panels: From noble-metal extraction to lead removal. ACS Sustainable Chemical Engineering 4 (8):4079–83. doi:10.1021/acssuschemeng.6b00894.
  • Kang, S., S. Yoo, J. Lee, B. Boo, and H. Ryu. 2012. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy 47:152–59. doi:10.1016/j.renene.2012.04.030.
  • Kazmerski, L. 2006. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. Journal of Electron Spectroscopy & Related Phenomena 150 (2–3):105–35. doi:10.1016/j.elspec.2005.09.004.
  • Kim, B., D. Kim, S. Kwon, S. Park, Z. Li, K. Zhu, and H. Jung. 2016. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nature Communications 7 (1):1–9. doi:10.1038/ncomms11735.
  • Kim, Y., and J. Lee. 2012. Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Solar Energy Materials and Solar Cells 98:317–22. doi:10.1016/j.solmat.2011.11.022.
  • Klugmann, R., and P. Ostrowski. 2010. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy 35 (8):1751–59. doi:10.1016/j.renene.2009.11.031.
  • Klugmann, E., P. Ostrowski, K. Drabczyk, K. Drabczyk, P. Panek, and M. Szkodo. 2010. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells 94 (12):2275–82. doi:10.1016/j.solmat.2010.07.025.
  • Koohestani, S., S. Nizeti, and M. Santamouris. 2023. Comparative review and evaluation of state-of-the-art photovoltaic cooling technologies. Journal of Cleaner Production 406:136953. doi:10.1016/j.jclepro.2023.136953.
  • Kuroiwa, K., S. Ohura, S. Morisada, K. Ohto, H. Kawakita, Y. Matsuo, and D. Fukuda. 2014. Recovery of germanium from waste solar panels using ion-exchange membrane and solvent extraction. Minerals Engineering 55:181–85. doi:10.1016/j.mineng.2013.10.002.
  • Lazard. 2020. Historical mean unsubsidised LCOE values (nominal terms, post-tax). London: Lazard.
  • Lee, J., Y. Ahn, G. Kang, and J. Wang. 2017. Recovery of Pb-Sn Alloy and copper from photovoltaic ribbon in spent solar module. Applied Surface Science 415:137–42. doi:10.1016/j.apsusc.2017.02.072.
  • Liu, C., Q. Zhang, and H. Wang. 2020. Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Management 118:491–500. doi:10.1016/j.wasman.2020.08.052.
  • Liu, C., Y. Zhu, K. Huang, Z. Yang, and S. Liang. 2021. Studies of benzyl hydroxamic acid/calcium lignosulphonate addition order in the flotation separation of smithsonite from calcite. International Journal of Mining Science and Technology 31 (6):1153–58. doi:10.1016/j.ijmst.2021.09.005.
  • Li, Y., H. Zhao, X. Sui, X. Wang, and H. Ji. 2022. Studies on individual pyrolysis and co-pyrolysis of peat–biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics. Fuel 310:122280. doi:10.1016/j.fuel.2021.122280.
  • Louwen, A., W. Sark, S. Turkenburg, and A. Faaij. 2014. Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs. Progress in Photovoltaics: Research and Applications 23 (10):1406–28. doi:10.1002/pip.2540.
  • Lunardi, M., J. Alvarez, J. Bilbao, and R. Corkish. 2018. A review of recycling processes for photovoltaic modules. Solar Panels and Photovoltaic Materials. doi:10.5772/intechopen.74390.
  • Luo, M., F. Liu, Z. Zhou, L. Jiang, M. Jia, Y. Lai, J. Li, and Z. Zhang. 2021. A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells. Journal of Environmental Chemical Engineering 9 (6):106830. doi:10.1016/j.jece.2021.106830.
  • Maciej, M. 2020. Renewable and citizen energy communities in the European Union: How (not) to regulate community energy in national laws and policies. Journal of Energy & Natural Resources Law. doi:10.1080/02646811.2020.1759247.
  • Marin, M., A. Jiménez, J. López, and J. Vilaplana. 1996. Thermal degradation of ethylene (vinyl acetate) - Kinetic analysis of thermogravimetric data. Journal of Thermal Analysis and Calorimetry 47 (1):247–58. doi:10.1007/bf01982703.
  • Marwede, M., W. Berger, M. Schlummer, A. MaEurer, and A. Reller. 2013. Recycling paths for thin-film chalcogenide photovoltaic waste - Current feasible processes. Renewable Energy 55:220–29. doi:10.1016/j.renene.2012.12.038.
  • Marwede, M., and A. Reller. 2012. Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resources Conservation & Recycling 69:35–49. doi:10.1016/j.resconrec.2012.09.003.
  • Ma, F., D. Tao, Y. Tao, and S. Liu. 2021. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation. International Journal of Mining Science and Technology 31 (6):1063–74. doi:10.1016/j.ijmst.2021.06.005.
  • Md, S., S. Kazi, C. Tanjia, N. Narissara, T. Kuaanan, A. Md, K. Sieh, S. Kamaruzzaman, and A. Nowshad. 2020. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews 27:100431. doi:10.1016/j.esr.2019.100431.
  • Merla, K., and P. Sanket. 2023. A typology of business models for energy communities: Current and emerging design options. Renewable and Sustainable Energy Reviews 176:113165. doi:10.1016/j.rser.2023.113165.
  • Olson, C., B. Geerligs, M. Goris, I. Bennett, and J. Clyncke, 2013. Current and future Priorities for mass and material in silicon PV module recycling. 28th European Photovoltaic Solar Energy Conference and Exhibition, 4629–33. doi:10.4229/28thEUPVSEC2013-6BV.8.2
  • Padoan, F., P. Altimari, and F. Pagnanelli. 2019. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy 177:746–61. doi:10.1016/j.solener.2018.12.003.
  • Pagnanelli, F., E. Moscardini, P. Altimari, F. Padoan, T. Atia, F. Beolchini, A. Amato, and L. Toro. 2019. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment. Journal of Environmental Management 248:109313. doi:10.1016/j.jenvman.2019.109313.
  • Pagnanelli, F., E. Moscardini, G. Granata, T. Atia, P. Altimari, T. Havlik, and L. Toro. 2017. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management 59:422–31. doi:10.1016/j.wasman.2016.11.011.
  • Paiano, A. 2015. Photovoltaic waste assessment in Italy. Renewable and Sustainable Energy Reviews 41:99–112. doi:10.1016/j.rser.2014.07.208.
  • Park, J., A. Kim, B. Cho, H. Lee, and N. Park. 2015. An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: From separation to cell fabrication. Green Chemistry 18 (6):1706–14. doi:10.1039/C5GC01819F.
  • Peeters, J., D. Altamirano, W. Dewulf, and R. Duflou. 2017. Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders. Resources Conservation & Recycling 120:14–26. doi:10.1016/j.resconrec.2017.01.001.
  • Pestalozzi, F., S. Eisert, and J. Woidasky. 2018. Benchmark comparison of high voltage discharge separation of photovoltaic modules by electrohydraulic and electrodynamic fragmentation. Recycling 3 (2):13. doi:10.3390/recycling3020013.
  • Qin, B., M. Lin, Z. Huang, R. Qiu, J. Ruan, Y. Tang, and R. Qiu. 2020. Preparing cedrene from ethylene-vinyl acetate copolymer and polyethylene terephthalate of waste solar cells. Journal of Cleaner Production 254:120065. doi:10.1016/j.jclepro.2020.120065.
  • Ramos, A., J. Wilkening, J. Field, and R. Sierra. 2017. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. Journal of Hazardous Materials 336:57–64. doi:10.1016/j.jhazmat.2017.04.052.
  • Raugei, M., S. Bargigli, and S. Ulgiati. 2007. Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 32 (8):1310–18. doi:10.1016/j.energy.2006.10.003.
  • Razykov, T., C. Ferekides, D. Morel, E. Stefanakos, H. Ullal, and H. Upadhyaya. 2011. Solar photovoltaic electricity: Current status and future prospects. Solar Energy 85 (8):1580–608. doi:10.1016/j.solener.2010.12.002.
  • Romeo, A., M. Terheggen, D. Abouras, D. Bätzner, F. Haug, M. Kälin, D. Rudmann, and A. Tiwari. 2004. Development of thin-film Cu (In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications 12 (23):93–111. doi:10.1002/pip.527.
  • Rubino, A., P. Schiavi, P. Altimari, and F. Pagnanelli. 2021. Valorization of polymeric fractions and metals from end of life photovoltaic panels. Waste Management 122:89–99. doi:10.1016/j.wasman.2020.12.037.
  • Sasala, R., J. Bohland, and K. Smigielski, 1996. Physical and chemical pathways for economic recycling of cadmium telluride thin-film photovoltaic modules. IEEE Photovoltaic Specialists Conference, 865–68. doi:10.1109/PVSC.1996.564265
  • Savvilotidou, V., A. Antoniou, and E. Gidarakos. 2017. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management 59:394–402. doi:10.1016/j.wasman.2016.10.003.
  • Sener, C., and V. Thenakis. 2014. Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs. Renewable and Sustainable Energy Reviews 32:854–68. doi:10.1016/j.rser.2014.01.030.
  • Song, B., M. Zhang, Y. Fan, L. Jiang, J. Kang, T. Gou, C. Zhang, N. Yang, G. Zhang, and X. Zhou. 2020. End-of-life management of bifacial solar panels using high-voltage fragmentation as pretreatment approach. Journal of Cleaner Production 276:124212. doi:10.1016/j.jclepro.2020.124212.
  • Sun, Z., Y. Zhao, G. Yan, H. Yuan, M. Zhang, and B. Zhang. 2023. A novel method for low-rank coal drying using steam transient flash evaporation. Fuel 354:129238. doi:10.1016/j.fuel.2023.129238.
  • Tammaro, M., J. Rimauro, V. Fiandra, and A. Salluzzo. 2015. Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes. Renewable Energy 81:103–12. doi:10.1016/j.renene.2015.03.014.
  • Vellini, M., M. Gambini, and V. Prattella. 2017. Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. Energy 138:1099–111. July 31, 2017. doi:10.1016/j.energy.2017.07.031.
  • Wang, W., and V. Fthenakis. 2005. Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins. Journal of Hazardous Materials 125 (1–3):80–88. doi:10.1016/j.jhazmat.2005.02.013.
  • Wang, T., J. Hsiao, and C. Du, 2012. Recycling of materials from silicon base solar cell module. Photovoltaic Specialists Conference, 002355–58. doi:10.1109/PVSC.2012.6318071
  • Wu, P., B. Xia, and X. Zhao. 2014. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete – a review. Renewable and Sustainable Energy Reviews 37:360–69. doi:10.1016/j.rser.2014.04.070.
  • Xu, X., D. Lai, G. Wang, and Y. Wang. 2021. Nondestructive silicon wafer recovery by a novel method of solvothermal swelling coupled with thermal decomposition. Chemical Engineering Journl 418:129457. doi:10.1016/j.cej.2021.129457.
  • Yan, X., J. Li, Q. Tan, L. Anesia, and C. Yang. 2018. Global status of recycling waste solar panels: A review. Waste Management 75:450–58. doi:10.1016/j.wasman.2018.01.036.
  • Yan, G., Z. Zhang, B. Zhang, G. Zhu, H. Yao, X. Zhu, J. Han, R. Liu, and Y. Zhao. 2019. Preferential sequence crushing of copper ore based upon high-voltage pulse technology. Minerals Engineering 131:398–406. doi:10.1016/j.mineng.2018.11.035.
  • Yan, G., B. Zhang, P. Zhao, S. Zhuang, E. Zhou, and Y. Zhao. 2020. Investigating the influence of mineral characteristics on induced effect of high-voltage pulse discharge by synthetic minerals. Minerals Engineering 153:106380. doi:10.1016/j.mineng.2020.106380.
  • Youn, K., S. Hyun, T. Tam, K. Sung, and J. Myong. 2014. Recovering valuable metals from recycled photovoltaic modules. Journal of the Air & Waste Management Association 64 (7):797–807. doi:10.1080/10962247.2014.891540.
  • Yuan, Z., X. Zhao, J. Lu, H. Lv, and L. Li. 2021. Innovative pre-concentration technology for recovering ultrafine ilmenite using superconducting high gradient magnetic separator. International Journal of Mining Science and Technology 31 (6):1043–52. doi:10.1016/j.ijmst.2021.10.011.
  • Yuta, A., I. Atsushi, and S. Etsuro. 2018. High-voltage pulse crushing and physical separation of polycrystalline silicon photovoltaic panels. Minerals Engineering 125:1–9. doi:10.1016/j.mineng.2018.05.015.
  • Zeng, D., M. Born, and K. Wambach. 2004. Pyrolysis of EVA and its application in recycling of photovoltaic modules. Journal of Environmental Sciences 16:889–93. doi:10.3321/j.issn:1001-0742.2004.06.003.
  • Zhang, X., D. Huang, W. Jiang, G. Zha, J. Deng, P. Deng, X. Kong, and D. Liu. 2020. Selective separation and recovery of rare metals by vulcanization-vacuum distillation of cadmium telluride waste. Separation & Purification Technology 230:115864. doi:10.1016/j.seppur.2019.115864.
  • Zhang, Q., C. Liu, and S. Zheng. 2023. Investment and pricing in solar photovoltaic waste recycling with government intervention: A supply chain perspective. Computers & Industrial Engineering 177:109044. doi:10.1016/j.cie.2023.109044.
  • Zhang, J., F. Lv, L. Ma, and L. Yang. 2013. The status and Trends of crystalline silicon PV module recycling treatment methods in Europe and China. Advanced Materials Research 724-725:200–04. doi:10.4028/www.scientific.net/AMR.724-725.200.
  • Zhao, P., J. Guo, G. Yan, G. Zhu, X. Zhu, Z. Zhang, and B. Zhang. 2020. A novel and efficient method for resources recycling in waste photovoltaic panels: High voltage pulse crushing. Journal of Cleaner Production 257:120442. doi:10.1016/j.jclepro.2020.120442.
  • Zhao, H., Ruan, R., Niu, X., Li, L., Zhang, E., 2021. A nanoscale qualitative study on the role of sodium hydrosulfide in oxidized carrollite flotation. International Journal of Mining Science and Technology, 31, 1085–1093. doi:10.1016/j.ijmst.2021.10.008.
  • Zhao, H., Q. Song, S. Liu, Y. Li, X. Wang, and X. Shu. 2018. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Conversion and Management 161:13–26. doi:10.1016/j.enconman.2018.01.083.
  • Zuo, W., F. Shi, and E. Manlapig. 2014. Electrical breakdown channel locality in high voltage pulse breakage. Minerals Engineering 69:196–204. doi:10.1016/j.mineng.2014.08.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.