199
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of post-combustion carbon capture process in marine diesel engine

Pages 10909-10925 | Received 01 Jun 2023, Accepted 23 Aug 2023, Published online: 01 Sep 2023

References

  • Agaton, C. B. 2021. Application of real options in carbon capture and storage literature: valuation techniques and research hotspots. Science of the Total Environment 795:148683. The Author(s). doi:10.1016/j.scitotenv.2021.148683.
  • Alhajaj, A., N. Mac Dowell, and N. Shah. 2016. A techno-economic analysis of post-combustion co2 capture and compression applied to a combined cycle gas turbine: part ii. identifying the cost-optimal control and Design variables. International Journal of Greenhouse Gas Control 52:331–43. Elsevier Ltd. doi:10.1016/j.ijggc.2016.07.008.
  • Baroudi Hisham, A., A. Awoyomi, K. Patchigolla, K. Jonnalagadda, and E. J. Anthony. 2021. A review of large-scale co2 shipping and marine emissions management for carbon capture, utilisation and storage. Applied Energy 287:116510. October 2020. Elsevier Ltd:116510. doi:10.1016/j.apenergy.2021.116510.
  • Bengtsson, S., K. Andersson, and E. Fridell. 2011. A comparative life cycle assessment of marine fuels: liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment. 225 (2):97–110. SAGE Publications. doi:10.1177/1475090211402136.
  • Bøckmann, E., and S. Steen. 2016. Calculation of EEDI weather for a general cargo vessel. Ocean Engineering 122:68–73. doi:10.1016/j.oceaneng.2016.06.007.
  • Boles, M. A., and A. Y. Cengel. 2014. Thermodynamics: An Engineering approach. McGraw-Hill Education. https://books.google.com.tr/books?id=Ao95ngEACAAJ.
  • Cachola, C., M. Ciotta, A. A. dos Santos, and D. Peyerl. 2023. Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology 7:100102. December 2022. Elsevier Ltd:100102. doi:10.1016/j.ccst.2023.100102.
  • Chen, L., L. Zhang, Y. Wang, M. Xie, H. Yang, Y. Kai, and S. Mohtaram. 2023. Design and performance evaluation of a novel system integrating water-based carbon capture with adiabatic compressed air energy storage. Energy Conversion and Management 276:116583. December 2022. Elsevier Ltd. doi:10.1016/j.enconman.2022.116583.
  • Dash, S. K., and S. S. Bandyopadhyay. 2016. Studies on the effect of addition of piperazine and sulfolane into aqueous solution of n-methyldiethanolamine for CO2 capture and vle modelling using ENRTL equation. International Journal of Greenhouse Gas Control 44:227–37. Elsevier Ltd. doi:10.1016/j.ijggc.2015.11.007.
  • Demir, M. E., and F. Çıtakoğlu. 2022. Design and modeling of a multigeneration system driven by waste heat of a marine diesel engine. International Journal of Hydrogen Energy 47 (95):40513–30. doi:10.1016/j.ijhydene.2022.05.182.
  • DeMontigny, D., A. Aboudheir, P. Tontiwachwuthikul, and A. Chakma. 2006. Modelling the performance of a CO2 absorber containing structured packing. Industrial and Engineering Chemistry Research 45 (8):2594–600. doi:10.1021/ie050567u.
  • Dong, X., Y. Zhao, M. Gong, G. Hao, and W. Jianfeng. 2015. (Vapour + liquid + liquid) equilibrium measurements and correlation for the {1,1,1,2-tetrafluoroethane (r134a)+ n-butane (r600)} system. Journal of Chemical Thermodynamics. 84 (84):87–92. Elsevier Ltd. doi:10.1016/j.jct.2014.12.030.
  • Fang, M., Z. Wang, S. Yan, Q. Cen, and Z. Luo. 2012. CO2 desorption from rich alkanolamine solution by using membrane vacuum regeneration technology. International Journal of Greenhouse Gas Control 9:507–21. Elsevier Ltd. doi:10.1016/j.ijggc.2012.05.013.
  • Feenstra, M., J. Monteiro, J. T. van den Akker, M. R. M. Abu-Zahra, E. Gilling, and E. Goetheer. 2019. Ship-based carbon capture onboard of diesel or LNG-Fuelled ships. International Journal of Greenhouse Gas Control 85 (June):1–10. Elsevier. doi:10.1016/J.IJGGC.2019.03.008.
  • Greer, T., A. Bedelbayev, J. M. Igreja, J. F. Gomes, and B. Lie. 2010. A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine. Environmental Technology 31 (1):107–15. doi:10.1080/09593330903373764.
  • Han, X., M. Zhu, K. Y. Lee, and W. Xiao. 2023. Multi-timescale and control-perceptive scheduling approach for flexible operation of power plant-carbon capture system. Fuel. 331 (1):125695. Elsevier Ltd:125695. doi:10.1016/j.fuel.2022.125695.
  • Hua, W., Y. Sha, X. Zhang, and H. Cao. 2023. Research progress of carbon capture and storage (ccs) technology based on the shipping industry. Ocean Engineering 281 (May):114929. Elsevier Ltd. doi:10.1016/j.oceaneng.2023.114929.
  • IMO. 2014. 2014 guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for New ships. Resolution MEPC 245 (66):3–32.
  • Konur, O., O. Yuksel, S. A. Korkmaz, C. O. Colpan, O. Y. Saatcıoglu, and I. Muslu. 2022. Thermal Design and analysis of an organic rankine cycle system utilizing the main engine and cargo oil pump turbine based waste heats in a large tanker ship. Journal of Cleaner Production 368:133230. doi:10.1016/j.jclepro.2022.133230.
  • Law, L. C., M. Roslee Othman, and E. Mastorakos. 2022. Numerical analyses on performance of low carbon containership. SSRN Electronic Journal 9:3440–57. Elsevier Ltd. doi:10.2139/ssrn.4266660.
  • Lee, S., S. Yoo, H. Park, J. Ahn, and D. Chang. 2021 January. Novel methodology for eedi calculation considering onboard carbon capture and storage system. International Journal of Greenhouse Gas Control 105: Elsevier Ltd:103241. doi:10.1016/j.ijggc.2020.103241.
  • Liu, Q., Y. Duan, and Z. Yang. 2013. Performance analyses of geothermal organic rankine cycles with selected hydrocarbon working fluids. Energy 63:123–32. doi:10.1016/j.energy.2013.10.035.
  • Liu, X., M.Q. Nguyen, J. Chu, T. Lan, and M. He. 2020. A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. Journal of Cleaner Production 265:121502. Elsevier Ltd:121502. doi:10.1016/j.jclepro.2020.121502.
  • Long, N. V. D, D. Y. Lee, C. Kwag, Y. M. Lee, S. W. Lee, V. Hessel, and M. Lee. 2021, June. Improvement of marine carbon capture onboard diesel fueled ships. ( Elsevier B.V.:108535) Chemical Engineering & Processing - Process Intensification 168:108535. doi:10.1016/j.cep.2021.108535.
  • Luo, X., and M. Wang. 2017. Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Applied Energy 195:402–13. Elsevier Ltd. doi:10.1016/j.apenergy.2017.03.027.
  • Malekli, M., and A. Aslani. 2022. A Novel post-combustion CO2 capture Design Integrated with an organic Rankine cycle (ORC). Process Safety and Environmental Protection 168 (August):942–52. Elsevier Ltd. doi:10.1016/j.psep.2022.10.076.
  • Mondejar, M. E., J. G. Andreasen, L. Pierobon, U. Larsen, M. Thern, and F. Haglind. 2018. A review of the use of organic Rankine cycle power systems for maritime applications. Renewable and Sustainable Energy Reviews 91 (April):126–51. Elsevier Ltd. doi:10.1016/j.rser.2018.03.074.
  • Mores, P., N. Rodríguez, N. Scenna, and S. Mussati. 2012. CO2 capture in power plants: Minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution. International Journal of Greenhouse Gas Control 10:148–63. Elsevier Ltd. doi:10.1016/j.ijggc.2012.06.002.
  • Mores, P., N. Scenna, and S. Mussati. 2011. Post-combustion CO2 capture process: Equilibrium stage mathematical model of the Chemical absorption of CO2 into monoethanolamine (mea) aqueous solution. Chemical Engineering Research and Design 89 (9):Institution of Chemical Engineers:1587–1599. doi:10.1016/j.cherd.2010.10.012.
  • Mores, P., N. Scenna, and S. Mussati. 2012. A rate based model of a packed column for co2 absorption using aqueous monoethanolamine solution. International Journal of Greenhouse Gas Control 66:21–23. Elsevier Ltd. doi:10.1016/j.ijggc.2011.10.012.
  • Mudhasakul, S., H. Ku, and P. L. Douglas. 2013. A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. International Journal of Greenhouse Gas Control 15:134–41. Elsevier Ltd. doi:10.1016/j.ijggc.2013.01.023.
  • Nabi, M. N. 2010. Theoretical investigation of engine thermal efficiency, adiabatic flame temperature, nox emission and combustion-related parameters for different oxygenated fuels. Applied Thermal Engineering. 30 (8–9):839–44. Elsevier Ltd. doi:10.1016/j.applthermaleng.2009.12.015.
  • Oyenekan, B. A. 2007. Modeling of strippers for CO2 capture by aqueous amines. Doctoral Thesis at Technical University of Texas at Austin 89 (May):317.
  • Peng, D. Y., and D. B. Robinson. 1976. A New two-constant equation of state. Industrial and Engineering Chemistry Fundamentals 15 (1):59–64. doi:10.1021/i160057a011.
  • Rahim, N. A., N. Ghasem, and M. Al-Marzouqi. 2015. Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science & Engineering 26:108–17. Elsevier B.V. doi:10.1016/j.jngse.2015.06.010.
  • Rochelle, G. T. 2012. Thermal degradation of amines for CO2 capture. Current Opinion in Chemical Engineering 1 (2):183–90. Elsevier Ltd. doi:10.1016/j.coche.2012.02.004.
  • Rubin, E. S., and M. B. Berkenpas. 2004. Amine-Based CO2 Capture and Storage Systems for Fossil Fuel Power Plant Final. Pennsylvania: U.S. Department of Energy National Energy Technology Laboratory.
  • Shu, G., Y. Liang, H. Wei, H. Tian, J. Zhao, and L. Liu. 2013. A review of waste heat recovery on two-stroke ic engine aboard ships. Renewable and Sustainable Energy Reviews 19:385–401. doi:10.1016/j.rser.2012.11.034.
  • Song, J., Y. Song, and C. Gu. 2015. Thermodynamic analysis and performance optimization of an organic rankine cycle (orc) waste heat recovery system for marine diesel engines. Energy 82:976–85. Elsevier Ltd. doi:10.1016/j.energy.2015.01.108.
  • Srinivasan, K. K., P. J. Mago, and S. R. Krishnan. 2010. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle. Energy. 35 (6):2387–99. Elsevier. doi:10.1016/j.energy.2010.02.018.
  • Tollefson, J. 2018. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 562 (7726):172–73. doi:10.1038/d41586-018-06876-2.
  • Wang, H., Y. Hou, Y. Xiong, and X. Liang. 2021. Research on multi-interval coupling optimization of ship main dimensions for minimum EEDI. Ocean Engineering 237 (August): Elsevier Ltd:109588. doi:10.1016/j.oceaneng.2021.109588.
  • Wang, M., A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw. 2011. Post-combustion CO2 capture with Chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design. 89 (9):1609–24. Institution of Chemical Engineers:1609–1624. doi:10.1016/j.cherd.2010.11.005.
  • Weimann, L., G. Dubbink, L. van der Ham, and M. Gazzani. 2023 January. A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation. Applied Energy 336: Elsevier Ltd:120738. doi:10.1016/j.apenergy.2023.120738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.