209
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NiO & CuO nanocomposites coated photoanode for conversion of CO2 into solar fuel using photoelectrochemical cell

, &
Pages 10926-10936 | Received 14 Feb 2023, Accepted 18 Aug 2023, Published online: 01 Sep 2023

References

  • Abdolhosseinzadeh, Sino., Hamed. Asgharzadeh, Sina Sadighikia, and Alireza. Khataee. 2016. UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance. Research on Chemical Intermediates 42 (5):4479–4496. doi:10.1007/s11164-015-2291-z.
  • Arai, T., S. Sato, and T. Morikawa. 2015. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor. Energy & Environmental Science 8 (7):1998–2002. doi:10.1039/C5EE01314C.
  • Bhatt, H., M. Davawala, T. Joshi, M. Shah, and A. Unnarkat. 2023. Forecasting and mitigation of global environmental carbon dioxide emission using machine learning techniques. Cleaner Chemical Engineering 5:100095. doi:10.1016/j.clce.2023.100095.
  • Cardoso, J. C., T. M. Lizier, and M. V. B. Zanoni. 2010. Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Applied Catalysis: B Environmental 99 (1–2):96–102. doi:10.1016/j.apcatb.2010.06.005.
  • Chauvy, R., and G. De Weireld. 2020 8. CO2 utilization technologies in Europe: a short review. Energy Technology 8 (12):2000627. doi:10.1002/ente.202000627.
  • Cheng, J., M. Zhang, G. Wu, X. Wang, J. Zhou, and K. Cen. 2014. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environmental Science & Technology 48 (12):7076–84. doi:10.1021/es500364g.
  • Chen, X., and S. S. Mao. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews 107 (7):2891–959. doi:10.1021/cr0500535.
  • Costentin, C., M. Robert, and J.-M. Savéant. 2013. Catalysis of the electrochemical reduction of carbon dioxide. Chemical Society Reviews 42 (6):2423–36. doi:10.1039/C2CS35360A.
  • de Brito, J. F., F. F. Hudari, and M. V. B. Zanoni. 2018. Photoelectrocatalytic performance of nanostructured p-n junction NtTiO2/NsCuO electrode in the selective conversion of CO2 to methanol at low bias potentials. Journal of CO2 Utilization 24:81–88. doi:10.1016/j.jcou.2017.12.008.
  • de Brito, J. F., J. A. L. Perini, S. Perathoner, and M. V. B. Zanoni. 2019. Turning carbon dioxide into fuel concomitantly to the photoanode-driven process of organic pollutant degradation by photoelectrocatalysis. Electrochimica acta 306:277–84. doi:10.1016/j.electacta.2019.03.134.
  • Ferreira, A. P. R. A., R. C. P. Oliveira, M. M. Mateus, and D. M. Santos. 2023. A review of the use of electrolytic cells for energy and Environmental applications. Energies 16 (4):1593–641. doi:10.3390/en16041593.
  • Habisreutinger, S. N., L. Schmidt-Mende, and J. K. Stolarczyk. 2013. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 52 (29):7372–408. doi:10.1002/anie.201207199.
  • Krishnan, A., A. Swarnalal, D. Das, M. Krishnan, V. S. Saji, and S. M. A. Shibli. 2023. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences 139:389–417. doi:10.1016/j.jes.2023.02.051.
  • Kumar, B., M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak. 2012. Photochemical and Photoelectrochemical reduction of CO2. Annual Review of Physical Chemistry 63 (1):541–69. doi:10.1146/annurev-physchem-032511-143759.
  • Madkhali, N., C. Prasad, K. Malkappa, H. Y. Choi, V. Govinda, I. Bahadur, and R. A. Abumousa. 2023. Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering 17:100920. doi:10.1016/j.rineng.2023.100920.
  • Marszewski, M., S. Cao, J. Yu, and M. Jaroniec. 2015. Semiconductor-based photocatalytic CO2 conversion. Materials Horizons 2 (3):261–78. doi:10.1039/C4MH00176A.
  • Martín, A. J., G. O. Larrazábal, and J. Pérez-Ramírez. 2015. Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: Lessons from water electrolysis. Green Chemistry: An International Journal and Green Chemistry Resource: GC 17 (12):5114–30. doi:10.1039/C5GC01893E.
  • Montoya, J. H., L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov. 2017. Materials for solar fuels and chemicals. Nature Materials 16 (1):70–81. doi:10.1038/nmat4778.
  • Mustafa, A., B. G. Lougou, Y. Shuai, Z. Wang, and H. Tan. 2020. Current technology development for CO2 utilization into solar fuels and chemicals: A review. Journal of Energy Chemistry 49:96–123. doi:10.1016/j.jechem.2020.01.023.
  • Nandal, N., and S. L. Jain. 2022. A review on progress and perspective of molecular catalysis in photoelectrochemical reduction of CO2. Coord Chem Reviews 451:214271. doi:10.1016/j.ccr.2021.214271.
  • Nandal, N., N. R. Manwar, B. M. Abraham, P. K. Khatri, and S. L. Jain. 2022. Photoelectrochemical reduction of CO2Promoted by a molecular hybrid made Up of Co(II)Pc on graphene oxide under visible light Illumination. Energy & Fuels 36:3760–70. doi:10.1021/acs.energyfuels.2c00096.
  • Ouyang, T., Y. Q. Ye, C. Tan, S. T. Guo, S. Huang, R. Zhao, S. Zhao, and Z.-Q. Liu. 2022. 1D α-Fe2O3/ZnO junction arrays modified by bi as photocathode: High efficiency in Photoelectrochemical reduction of CO2to HCOOH. The Journal of Physical Chemistry Letters 13 (29):6867–74. doi:10.1021/acs.jpclett.2c01509.
  • Pan, D., X. Ye, Y. Cao, S. Zhu, X. Chen, M. Chen, D. Zhang, and G. Li. 2020. Photoanode driven photoelectrocatalytic system for CO2 reduction to formic acid by using CoOx cathode. Applied Surface Science 511:145497. doi:10.1016/j.apsusc.2020.145497.
  • Pop, M., I. Bucur, D. Zoldan, K. Imre, I. Nichita, G. Cristina, A. Tîrziu, and E. Tîrziu. 2022. Chemical and microbiological air quality in a municipal solid waste landfill and its surroundings, in south-eastern Romania. Sustain 14 (1):14. doi:10.3390/su14010156.
  • Rezaul Karim, K. M., H. R. Ong, H. Abdullah, A. Yousuf, C. K. Cheng, and M. M. Rahman Khan. 2018. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation. International Journal of Hydrogen Energy 43 (39):18185–93. doi:10.1016/j.ijhydene.2018.07.174.
  • Roy, S. C., O. K. Varghese, M. Paulose, and C. A. Grimes. 2010. Toward solar fuels: Photocatalytic conversion of carbon dioxide to Hydrocarbons. Agricultural Science & Technology Nano 4:1259–78. doi:10.1021/nn9015423.
  • Saleh, T. A. 2022. Nanomaterials and hybrid nanocomposites for CO2 capture and utilization: Environmental and energy sustainability. RSC Advances 12 (37):23869–88. doi:10.1039/d2ra03242b.
  • Sekimoto, T., H. Hashiba, S. Shinagawa, Y. Uetake, M. Deguchi, S. Yotsuhashi, and K. Ohkawa. 2016. Analysis of products from Photoelectrochemical reduction of 13 CO 2 by GaN-Si based tandem photoelectrode. The Journal of Physical Chemistry C 120 (26):13970–75. doi:10.1021/acs.jpcc.6b03840.
  • Sultana, S., P. Chandra Sahoo, S. Martha, and K. Parida. 2016. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Advances 6 (50):44170–94. doi:10.1039/C6RA05472B.
  • White, J. L., M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, et al. 2015. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews. 115(23):12888–935. doi:10.1021/acs.chemrev.5b00370.
  • Xiao, S., Z. Li, Q. Fu, Y. Li, J. Li, L. Zhang, Q. Liao, and X. Zhu. 2020. Hybrid microbial photoelectrochemical system reduces CO2 to CH4 with 1.28% solar energy conversion efficiency. Chemical Engineering Journal 390:124530. doi:10.1016/j.cej.2020.124530.
  • Yamamoto, T., H. Katsumata, T. Suzuki, and S. Kaneco. 2017. Photoelectrochemical reduction of CO 2 in methanol with TiO 2 photoanode and metal cathode. ECS Transactions 75 (50):31–37. doi:10.1149/07550.0031ecst.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.