69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Immobilization of a new copper (II) complex dye with multi-walled carbon nanotubes and functional simulation in dye-sensitized solar cell

, &
Pages 10937-10951 | Received 17 Jan 2023, Accepted 25 Aug 2023, Published online: 04 Sep 2023

References

  • Abiman, P., G. G. Wildgoose, and R. G. Compton. 2008. Investigating the mechanism for the covalent chemical modification of multiwalled carbon nanotubes using aryl diazonium salts. International Journal of Electrochemical Science 3 (2):104–17. doi:10.1016/S1452-3981(23)15430-7.
  • Amiri, R., S. Rasouli, A. Ghasemi, B. Eghbali, and S. Mohammadi. 2014. Structural dependence of the multi-functionalized carbon nanotubes to the substituents on the grafted diazo compounds. Journal of Nanoparticle Research 16 (5):1–12. doi:10.1007/s11051-014-2388-0.
  • Baughman, R. H., A. A. Zakhidov, and W. A. De Heer. 2002. Carbon nanotubes–the route toward applications. Science 297 (5582):787–92. doi:10.1126/science.1060928.
  • Benkhaya, S., S. M’rabet, and A. El Harfi. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6 (1):e03271. doi:10.1016/j.heliyon.2020.e03271.
  • Chen, J., B. Li, J. Zheng, Zhao J, Zhu Z. 2012. Role of carbon nanotubes in dye-sensitized TiO2-based solar cells. The Journal of Physical Chemistry C. 116(28):14848–56. doi:10.1021/jp304845t.
  • Chen, X., H. Wang, H. Yi, Wang X, Yan X, Guo Z. 2014. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. The Journal of Physical Chemistry C. 118(16):8262–70. doi:10.1021/jp5009626.
  • Cherifi, K., A. Cheknane, H. S. Hilal, Benghia A, Rahmoun K, Benyoucef B. 2020. Investigation of triphenylamine-based sensitizer characteristics and adsorption behavior onto ZnTiO3 perovskite (1 0 1) surfaces for dye-sensitized solar cells using first-principle calculation. Chemical Physics 530:110595. doi:10.1016/j.chemphys.2019.110595.
  • Conradie, M. M., E. H. G. Langner, and J. Conradie. 2021. DFT data to relate calculated LUMO energy with experimental reduction potentials of Cu (II)-β-diketonato complexes. Data in Brief 38:107331. doi:10.1016/j.dib.2021.107331.
  • Dai, Y.-M., W.-J. Liu, T.-C. Pan, Jehng JM. 2012. Surface activation on multi-wall carbon nanotube for electrochemical capacitor applications. Applied Surface Science. 258(7):3027–32. doi:10.1016/j.apsusc.2011.11.031.
  • da Silva, M. R. E., T. Auvray, and G. S. Hanan. 2020. Synthesis of a novel bipyrimidine dicarboxylic acid ligand for the preparation of panchromatic ruthenium dyes. Inorganica chimica acta 499:119194. doi:10.1016/j.ica.2019.119194.
  • Dembele, K., R. Nechache, L. Nikolova, Vomiero A, Santato C, Licoccia S, Rosei F. 2013. Effect of multi-walled carbon nanotubes on the stability of dye sensitized solar cells. Journal of Power Sources 233:93–97. doi:10.1016/j.jpowsour.2013.01.075.
  • Dhonde, M., K. Sahu, and V. Murty. 2021. Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Solar Energy 220:418–24. doi:10.1016/j.solener.2021.03.072.
  • Do Nascimento, G. M., R. C. de Oliveira, N. A. Pradie, P. R. G. Lins, P. R. Worfel, G. R. Martinez, P. Di Mascio, M. S. Dresselhaus, and P. Corio. 2010. Single-wall carbon nanotubes modified with organic dyes: Synthesis, characterization and potential cytotoxic effects. Journal of Photochemistry and Photobiology: A, Chemistry 211 (2–3):99–107. doi:10.1016/j.jphotochem.2010.01.019.
  • D-S, L., K. Choi, D. Hayati, D.-H. Park, A. Ghifari, K. M. Lee, Y. Ko, Y. Jun, H.-J. Suk, J. Hong, et al. 2020. Blue-colored dyes featuring a diketopyrrolopyrrole spacer for translucent dye-sensitized solar cells. Dyes and Pigments 173:107840. doi:10.1016/j.dyepig.2019.107840.
  • El-Ghamaz, N., A. El-Bindary, A. El-Sonbati, Beshry NM. 2015. Geometrical structures, thermal, optical and electrical properties of azo quinoline derivatives. Journal of Molecular Liquids 211:628–39. doi:10.1016/j.molliq.2015.07.050.
  • Ghoneim, M., N. El-Ghamaz, A. El-Sonbati, Diab MA, El-Bindary AA, Serag LS. 2015. Optical and thermal properties of azo derivatives of salicylic acid thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137:1039–49. doi:10.1016/j.saa.2014.08.122.
  • Gup, R., E. Giziroglu, and B. Kırkan. 2007. Synthesis and spectroscopic properties of new azo-dyes and azo-metal complexes derived from barbituric acid and aminoquinoline. Dyes and Pigments 73 (1):40–46. doi:10.1016/j.dyepig.2005.10.005.
  • Hattori, S., Y. Wada, S. Yanagida, and S. Fukuzumi. 2005. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society 127 (26):9648–54. doi:10.1021/ja0506814.
  • Heald, C. G. R., G. G. Wildgoose, L. Jiang, T. G. J. Jones, and R. G. Compton. 2004. Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts. ChemPhyschem 5 (11):1794–99. doi:10.1002/cphc.200400369.
  • Jiang, X., T. Marinado, E. Gabrielsson, Hagberg DP, Sun L, Hagfeldt A. 2010. Structural modification of organic dyes for efficient coadsorbent-free dye-sensitized solar cells. The Journal of Physical Chemistry C. 114(6):2799–805. doi:10.1021/jp908552t.
  • Jilakian, M., and T. H. Ghaddar. 2022. Eco-friendly Aqueous dye-sensitized solar cell with a copper (I/II) electrolyte System: Efficient performance under ambient light conditions. ACS Applied Energy Materials 5 (1):257–65. doi:10.1021/acsaem.1c02789.
  • Kalinathan, K., D. P. DesRoches, X. Liu, and P. G. Pickup. 2008. Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities. Journal of Power Sources 181 (1):182–85. doi:10.1016/j.jpowsour.2008.03.032.
  • Köhler F. H. 2007. Paramagnetic complexes in solution: The NMR approach. Encyclopedia of Magnetic Resonance. doi:10.1002/9780470034590.emrstm1229.
  • Liu, K., J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie et al. 2012. An atlas of carbon nanotube optical transitions. Nature Nanotechnology. 7(5):325–29. doi:10.1038/nnano.2012.52.
  • Liu, J., M. R. I Zubiri, B. Vigolo, M. Dossot, Y. Fort, J.-J. Ehrhardt, and E. McRae. 2007. Efficient microwave-assisted radical functionalization of single-wall carbon nanotubes. Carbon 45 (4):885–91. doi:10.1016/j.carbon.2006.11.006.
  • Martínez-Hernández, A. L., C. Velasco-Santos, and V. Castano. 2010. Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Current Nanoscience 6 (1):12–39. doi:10.2174/157341310790226270.
  • Nazeeruddin, M. K., S. Zakeeruddin, R. Humphry-Baker, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Grätzel M. 1999. Acid− Base equilibria of (2, 2 ‘-Bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry. 38(26):6298–305. doi:10.1021/ic990916a.
  • Nikoofard, H., A. Omrani, and M. M. Niaki. 2014. Preparation and characterization of poly (1-amino-9, 10-anthraquinone)/multiwalled carbon nanotube nanocomposite. Monatshefte für Chemie-Chemical Monthly 145 (2):267–73. doi:10.1007/s00706-013-1090-8.
  • Odobel, F., and Y. Pellegrin. 2013. Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. The Journal of Physical Chemistry Letters 4 (15):2551–64. doi:10.1021/jz400861v.
  • O’regan, B., and M. Grätzel. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (6346):737–40. doi:10.1038/353737a0.
  • Ritter, U., P. Scharff, C. Siegmund, O. P. Dmytrenko, N. P. Kulish, Y. I. Prylutskyy, N. M. Belyi, V. A. Gubanov, L. I. Komarova, S. V. Lizunova, et al. 2006. Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon. 44(13):2694–700. doi:10.1016/j.carbon.2006.04.010.
  • Siwach, B., D. Mohan, M. Barala, ed. 2019. Fabrication and characterization of MWCNTs and Pt/MWCNTs counter electrodes for dye sensitized solar cells. AIP Conference Proceedings, Shanghai, China: AIP Publishing.
  • Tanchak, O. M., and C. J. Barrett. 2005. Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect. Macromolecules 38 (25):10566–70. doi:10.1021/ma051564w.
  • Zandi, S., P. Saxena, M. Razaghi, and N. E. Gorji. 2020. Simulation of CZTSSe thin-film solar cells in COMSOL: Three-dimensional optical, electrical, and thermal models. IEEE Journal of Photovoltaics 10 (5):1503–07. doi:10.1109/JPHOTOV.2020.2999881.
  • Zhang, W., and S. Silva. 2010. Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Materialia 63 (6):645–48. doi:10.1016/j.scriptamat.2010.05.037.
  • Zhang, D., M. Stojanovic, Y. Ren, Y. Cao, F. T. Eickemeyer, E. Socie, N. Vlachopoulos, J.-E. Moser, S. M. Zakeeruddin, A. Hagfeldt et al. 2021. A molecular photosensitizer achieves a V oc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper (II/I)-based electrolyte. Nature Communications. 12(1):1777. doi:10.1038/s41467-021-21945-3.
  • Zhao, J., J. Ma, X. Nan, Tang B. 2016. Application of non-covalent functionalized carbon nanotubes for the counter electrode of dye-sensitized solar cells. Organic Electronics 30:52–59. doi:10.1016/j.orgel.2015.11.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.