85
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Energy, exergy, and sustainability analysis of an industrial nitric acid plant

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 10952-10970 | Received 02 Jun 2023, Accepted 28 Aug 2023, Published online: 10 Sep 2023

References

  • Abbasfard, H., M. Ghanbari, M. Ghasemi, G. Ghahraman, S. M. Jokar, and M. R. Rahimpour. 2014. CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study. Applied Thermal Engineering 67 (1–2):223–29. doi:10.1016/j.applthermaleng.2014.03.035.
  • Abbasfard, H., S. H. Hashemi, M. R. Rahimpour, S. M. Jokar, and S. Ghader. 2013. Reducing NO x emissions from a nitric acid plant of domestic petrochemical complex: Enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process. Environmental Technology 34 (20):2867–79. doi:10.1080/09593330.2013.795989.
  • Abbaspour, H., M. A. Ehyaei, A. Ahmadi, A. Abdalisousan, and A. Mirzohosseini. 2021. Energy, exergy, economic, exergoenvironmental and environmental (5E) analyses of the cogeneration plant to produce electrical power and urea. Energy Conversion and Management 235:113951. doi:10.1016/j.enconman.2021.113951.
  • Acıkkalp, E., H. Aras, and A. Hepbasli. 2014. Advanced exergoeconomic analysis of an electricity-generating facility that operates with natural gas. Energy Conversion and Management 78:452–60. doi:10.1016/j.enconman.2013.11.003.
  • Ahmadi, G. R., and D. Toghraei. 2016. Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews 56:454–63. doi:10.1016/j.rser.2015.11.074.
  • Akbari, M., S. M. S. Mahmoudi, M. Yari, and M. A. Rosen. 2014. Energy and exergy analyses of a New combined cycle for producing electricity and desalinated water using geothermal energy. Sustainability 6:1796–820. doi:10.3390/su6041796.
  • Aljundi, I. H. 2009. Energy and exergy analysis of a steam power plant in Jordan. Applied Thermal Engineering 29:324–28. doi:10.1016/j.applthermaleng.2008.02.029.
  • Archive of Karun Petrochemical company in Iran. 2021.
  • Balli, O. 2017. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering 111:152–69. doi:10.1016/j.applthermaleng.2016.09.036.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. New York: Wiley.
  • Benhamza, A., A. Boubekri, A. Atia, H. E. Ferouali, T. Hadibi, M. Arıcı, and N. Abdenouri. 2021. Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential. Renewable Energy 169:1190–209. doi:10.1016/j.renene.2021.01.086.
  • Buelvas Hernández, A., J. G. Fajardo, D. Barreto, G. E. Carrillo Caballero, Y. Cárdenas Escorcia, C. R. Vidal Tovar, and Y. Gordon Hernández. 2021. Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train’s intermediate stages. Case Studies in Thermal Engineering 27:101214. doi:10.1016/j.csite.2021.101214.
  • Caglayan, H., and H. Caliskan. 2021. Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental conditions. Renewable and Sustainable Energy Reviews 140:110730. doi:10.1016/j.rser.2021.110730.
  • Chart Software, Engineering Equation Solver (EES). 2010. http://www.fchart.com/ees/
  • Chatterjee, I., and J. Joshi. 2008. Modeling, simulation and optimization: Mono pressure nitric acid process. Chemical Engineering Journal 138:556–77. doi:10.1016/j.cej.2007.07.064.
  • Fajardo, J. G., H. Valle, and A. Buelvas. 2019. Avoidable and unavoidable exergetic destruction analysis of nitric acid production plant. ASME International Mechanical Engineering Congress and Exposion 6B:9–15. doi:10.1115/IMECE2018-87495.
  • Gaggioli, R. A., D. A. Sama, S. Qian, and Y. M. El-Sayed. 1991. Integration of a new process into an existing site: A case study in the application of exergy analysis. Journal of Engineering for Gas Turbines and Power 113 (2):170–80. doi:10.1115/1.2906540.
  • Gökgedik, H., M. Yürüsoy, and A. Keçebaş. 2016. Improvement potential of a real geothermal power plant using advanced exergy analysis. Energy 112:254–263. doi:10.1016/j.energy.2016.06.079.
  • Ibrahim, T. K., F. Basrawi, O. I. Awad, A. N. Abdullah, G. Najafi, R. Mamat, and F. Y. Hagos. 2017. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering 115:977–85. doi:10.1016/j.applthermaleng.2017.01.032.
  • Kirova-Yordanova, Z. 2011. Application of the exergy method to the environmental impact estimation: The nitric acid production as a case study. Energy 36:3733–44. doi:10.1016/j.energy.2010.12.039.
  • Kirova-Yordanova, Z., Y. Barakov, and D. Koleva 1994. Exergy analysis of nitric acid plants: A case study. E. Carnevale, G. Manfrida, and F. Martelli, ed. Proceedings of the Florence World Energy Research Symposium FLOWERS’94 “Energy for the 21st Century”, Florence, Italy. Padova: SGE Editoriali. 931–39.
  • Kotas, T. J. 2013. The exergy method of Thermal plant analysis. New York: Elsevier.
  • Mascarenhas, J. D. S., H. Chowdhury, M. Thirugnanasambandam, T. Chowdhury, and R. Saidur. 2019. Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production 231:183–95. doi:10.1016/j.jclepro.2019.05.158.
  • Mehrpooya, M., M. Khalili, and M. M. MoftakhariSharifzadeh. 2018. Model development and energy and exergy analysis of the biomass gasification process (based on the various biomass sources). Renewable and Sustainable Energy Reviews 91:869–87. doi:10.1016/j.rser.2018.04.076.
  • Mewada, R. K., and S. C. Nimkar. 2015. Minimisation of exergy losses in mono high pressure nitric acid process. International Journal of Exergy 17:192–218. doi:10.1504/IJEX.2015.069990.
  • Othmer, K. 2005. Encyclopedia of chemical technology, Vol. 17, 5th ed. New York: Wiley.
  • Rosen, M. A., I. Dincer, and M. Kanoglu. 2008. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36:128–37. doi:10.1016/j.enpol.2007.09.006.
  • Siminiceanu, I. 2005. The exergy analyses of industrial systems. Boletinul AGIR 1:69–76.
  • Speight, J. G. Handbook of Petrochemical processes. 2019. 1th. New York: CRC Press. doi:10.1201/9780429155611-1.
  • Tontu, M. 2021. Performance assessment and economic evaluation of trigeneration energy system driven by the waste heat of coal-fired power plant for electricity, hydrogen and freshwater production. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (9):406. doi:10.1007/s40430-021-03126-x.
  • Tontu, M., M. Bilgili, and B. Sahin. 2018. Performance analysis of an industrial steam power plant with varying loads. International Journal of Exergy 27 (2):231–50. doi:10.1504/IJEX.2018.094596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.