74
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combustion characteristics of polymethyl methacrylate waste under different thicknesses for energy utilization

, , , , & ORCID Icon
Pages 10971-10982 | Received 30 Jun 2023, Accepted 28 Aug 2023, Published online: 05 Sep 2023

References

  • An, W., L. Jiang, J. Sun, and K. Liew. 2015. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. Journal of Thermal Analysis and Calorimetry 119 (1):229–38. doi:10.1007/s10973-014-4165-9.
  • Babrauskas, V., and R. D. Peacock. 1992. Heat release rate: The single most important variable in fire hazard. Fire Safety Journal 18 (3):255–72. doi:10.1016/0379-7112(92)90019-9.
  • Chen, R., and M. Xu. 2020. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis. Waste Management 113:51–61. doi:10.1016/j.wasman.2020.05.039.
  • Chen, R., X. Xu, Y. Zhang, S. Lu, and S. Lo. 2020. Characterization of ignition and combustion characteristics of phenolic fiber-reinforced plastic with different thicknesses. Journal of Thermal Analysis and Calorimetry 140 (2):645–55. doi:10.1007/s10973-019-08903-4.
  • Dao, D. Q., J. Luche, F. Richard, T. Rogaume, C. Bourhy-Weber, and S. Ruban. 2013. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. International Journal of Hydrogen Energy 38 (19):8167–78. doi:10.1016/j.ijhydene.2012.05.116.
  • Delichatsios, M. A., T. Panagiotou, and F. Kiley. 1991. The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combustion and Flame 84 (3–4):323–32. doi:10.1016/0010-2180(91)90009-Z.
  • Ding, Y., K. Fukumoto, O. A. Ezekoye, S. Lu, C. Wang, and C. Li. 2020. Experimental and numerical simulation of multi-component combustion of typical charring material. Combustion and Flame 211:417–29. doi:10.1016/j.combustflame.2019.10.016.
  • Ding, Y., G. Jiang, K. Fukumoto, M. Zhao, X. Zhang, C. Wang, and C. Li. 2023. Experimental and numerical simulation of multi-component combustion of typical no-charring material. Energy 262:125555. doi:10.1016/j.energy.2022.125555.
  • Ding, Y., W. Zhang, X. Zhang, D. Han, W. Liu, and J. Jia. 2022. Pyrolysis and combustion behavior study of PMMA waste from micro-scale to bench-scale experiments. Fuel 319:123717. doi:10.1016/j.fuel.2022.123717.
  • Gao, Z., T. Kaneko, D. Hou, and M. Nakada. 2004. Kinetics of thermal degradation of poly (methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polymer Degradation and Stability 84 (3):399–403. doi:10.1016/j.polymdegradstab.2003.11.015.
  • Hopkins, D., and J. G. Quintiere. 1996. Material fire properties and predictions for thermoplastics. Fire Safety Journal 26 (3):241–68. doi:10.1016/S0379-7112(96)00033-1.
  • ISO 17554. 1998. Reaction to fire-mass loss measurement, International Organization for Standardization Geneva. Switzerland: International Organization for Standardization.
  • ISO5660. 2002. Reaction to fire tests heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method). Switzerland: International Organization for Standardization Geneva. International Organization for Standardization.
  • Janssens, M. 1991. Piloted ignition of wood: A review. Fire and Materials 15 (4):151–67. doi:10.1002/fam.810150402.
  • Janssens, M. 2003. Computer tools to determine material properties for fire growth modeling from cone calorimeter data. Fire and Materials 8:377–87.
  • Janssens, M. L. 1991. Measuring rate of heat release by oxygen consumption. Fire Technology 27 (3):234–49. doi:10.1007/BF01038449.
  • Jing, J., Y. Zhang, and Z. Fang. 2017. Diphenolic acid based biphosphate on the properties of polylactic acid: Synthesis, fire behavior and flame retardant mechanism. Polymer 108:29–37. doi:10.1016/j.polymer.2016.11.036.
  • Kaminsky, W., and C. Eger. 2001. Pyrolysis of filled PMMA for monomer recovery. Journal of Analytical and Applied Pyrolysis 58:781–87. doi:10.1016/S0165-2370(00)00171-6.
  • L, J. M. 1993. Improved method of analysis for the LIFT apparatus, Part I: Ignition. Proceedings of the 2nd Fire and Materials Conference, Interscience Communications London, UK.
  • Li, A., B. Huang, H. Wu, W. Zhang, R. Zhou, and Y. Ding. 2022. Effects of sample thickness on the combustion and smoke characteristics of chlorinated polyvinyl chloride. Journal of Applied Polymer Science 139 (4):51541. doi:10.1002/app.51541.
  • Li, L., J. Ren, and H. Hu. 2022. Thermal degradation mechanism and thermal life of PMMA/hydroxylated MWCNT nanocomposites. Plastics, Rubber & Composites 51 (2):98–108. doi:10.1080/14658011.2021.1941687.
  • Luche, J., E. Mathis, T. Rogaume, F. Richard, and E. Guillaume. 2012. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Safety Journal 54:24–35. doi:10.1016/j.firesaf.2012.08.002.
  • Luche, J., T. Rogaume, F. Richard, and E. Guillaume. 2011. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Safety Journal 46 (7):451–61. doi:10.1016/j.firesaf.2011.07.005.
  • Martinka, J., P. Rantuch, J. Sulova, and F. Martinka. 2019. Assessing the fire risk of electrical cables using a cone calorimeter. Journal of Thermal Analysis and Calorimetry 135 (6):3069–83. doi:10.1007/s10973-018-7556-5.
  • Mikkola, E., and I. S. Wichman. 1989. On the thermal ignition of combustible materials. Fire and Materials 14 (3):87–96. doi:10.1002/fam.810140303.
  • Parku, G. K., F.-X. Collard, and J. F. Görgens. 2020. Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology 209:106522. doi:10.1016/j.fuproc.2020.106522.
  • Quintiere, J. G., and A. S. Rangwala. 2004. A theory for flame extinction based on flame temperature. Fire and Materials 28 (5):387–402. doi:10.1002/fam.835.
  • Rhodes, B. T., and J. G. Quintiere. 1996. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal 26 (3):221–40. doi:10.1016/S0379-7112(96)00025-2.
  • Shi, L., and M. Y. L. Chew. 2013. Experimental study of woods under external heat flux by autoignition ignition time and mass loss rate. Journal of Thermal Analysis and Calorimetry 111 (2):1399–407. doi:10.1007/s10973-012-2489-x.
  • Smolders, K., and J. Baeyens. 2004. Thermal degradation of PMMA in fluidised beds. Waste Management 24 (8):849–57. doi:10.1016/j.wasman.2004.06.002.
  • Szabo, E., M. Olah, F. Ronkay, N. Miskolczi, and M. Blazso. 2011. Characterization of the liquid product recovered through pyrolysis of PMMA–ABS waste. Journal of Analytical and Applied Pyrolysis 92 (1):19–24. doi:10.1016/j.jaap.2011.04.008.
  • Torero, J. L. 2004. Ignition handbook, ignition handbook, principles and applications to fire safety engineering, fire investigation, risk management and forensic science by vytenis babrauskas. Journal of Fire Protection Engineering 14 (3):229–32. doi:10.1177/1042391504042549.
  • Xie, H., X. Lai, R. Zhou, H. Li, Y. Zhang, X. Zeng, and J. Guo. 2015. Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability 118:167–77. doi:10.1016/j.polymdegradstab.2015.04.022.
  • Xu, Z., L. Yan, and Y. Liu 2014. Study on correlations between the flammability and dynamic smoke properties of four decorative materials. 9th International Symposium on Safety Science and Technology (ISSST), Beijing, China, 04-06, 498–505.
  • Zhang, W., J. Zhang, Y. Ding, R. Zhou, and S. Mao. 2022. The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization. Energy 239:239. doi:10.1016/j.energy.2021.122112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.