111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Laser ignition and flame propagation of methanol-air mixture in a constant volume combustion chamber

, ORCID Icon &
Pages 11142-11154 | Received 05 Jan 2023, Accepted 29 Aug 2023, Published online: 05 Sep 2023

References

  • Amirante, R., E. Disttaso, P. Tamburrano, and R. D. Reitz. 2017. Laminar flame speed correlations for methane, ethane, propane and their mixtures, and natural gas and gasoline for spark-ignition engine simulations. International Journal of Engine Research 18 (9):951–70. doi:10.1177/1468087417720018.
  • Baoa, X., A. Sahu, Y. Jiangb, T. Badawy, and H. Xu. 2019. Tawfik Badawy and Hongming Xua, flame kernel evolution and shock wave propagation with laser ignition in ethanol-air mixtures. Applied Energy 233-134:86–98. doi:10.1016/j.apenergy.2018.10.017.
  • Bradley, D., C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley. 2004. Fundamentals of high-energy spark ignition with lasers. Combustion and Flame 138 (1–2):55–77. doi:10.1016/j.combustflame.2004.04.002.
  • Cang-Su, X., D.-H. Fang, Q. Luo, and M. Jian. 2015. Yang Xie and Xu Zheng, characterization of gasoline combustion with laser and spark ignition. Journal of Zhejiang University Science (Applied Physics & Engineering) 16 (10):830–38.
  • Cang-Su, X., D.-H. Fang, Q. Luo, M. Jian, and Y. Xie. 2014. A comparative study of laser ignition and spark ignition with gasoline–air mixtures. Optics & Laser Technology 64:343–51. doi:10.1016/j.optlastec.2014.05.009.
  • Celik, B., B. Ozdalyan, and F. Alkan. 2011. The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 90 (4):1591–98. doi:10.1016/j.fuel.2010.10.035.
  • Cui, Y., H. Liu, M. Wen, L. Feng, C. Wang, Z. Ming, Z. Zhang, Z. Zheng, H. Zhao, X. Wang, et al. 2022. Optical diagnostics and chemical kinetic analysis on the dual-fuel combustion of methanol and high reactivity fuels. Fuel 312:122949. doi:10.1016/j.fuel.2021.122949.
  • Heywood, J. B. 2012. Internal combustion engine Fundamentals. McGraw-Hill International ed. 4th Reprint. New York.
  • Jin, C., T. Sun, X. Teng, X. Jiang, M. Wang, Z. Zhang, W. Yangyi, X. Zhang, and H. Liu. 2022. Influence of glycerol on methanol fuel characteristics and engine combustion performance. Energies 15 (18):6585. doi:10.3390/en15186585.
  • Liu, H., X. Zhang, Z. Zhang, W. Yangyi, C. Wang, W. Chang, Z. Zheng, and M. Yao. 2023. Effects of 2-ethylhexyl nitrate (EHN) on combustion and emissions on a compression ignition engine fueling high-pressure direct-injection pure methanol fuel. Fuel 341:127684. doi:10.1016/j.fuel.2023.127684.
  • Maria, M., and B. Elisabeth. 2015. Explosion parameters of methanol-air mixtures. Fuel 158:217–23. doi:10.1016/j.fuel.2015.05.024.
  • Patane, P., V. Kolapte, M. Nandgaonkar, and S. Lahane. 2023. Laser-induced spark ignition of methane-air mixtures in constant volume combustion chamber. In Recent advances in manufacturing and thermal engineering. RAMMTE 2022. Lecture notes in mechanical engineering, ed. A. Kumar, M. Zunaid, K. A. Subramanian, and H. Lim, 329–42. Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-8517-1_23.
  • Patane, P., and M. Nandgaonkar. 2020. Review: Multi-point laser ignition system and its application to IC engines. Optics and Laser Technology 130:106305. doi:10.1016/j.optlastec.2020.106305.
  • Phuoc, T. X., and F. White. 1999. Laser-induced spark ignition of CH4/Air mixtures. Combustion and Flame 119 (3):203–16. doi:10.1016/S0010-2180(99)00051-6.
  • Prasad, R. K., S. Jain, G. Verma, and A. Agarwal. 2017. Laser ignition and flame kernel characterization of HCNG in a constant volume combustion chamber. Fuel 190:318–27. doi:10.1016/j.fuel.2016.11.003.
  • Qiyang, W., S. Yang, L. Kai, X. Li, and C. Xu. January 2023. Li Xiaolu and Xu Cangsu, laminar combustion characteristics of methane/methanol/air mixtures; Experimental and kinetic investigations. Case Studies in Thermal Engineering 41:102593. doi: 10.1016/j.csite.2022.102593.
  • Rahman, K., N. Kawahara, K. Tsuboi, and E. Tomita. 2016. Combustion characteristics of wet ethanol ignited using a focused Q-switched Nd:YAG nanosecond laser. Fuel 165:331–40. doi:10.1016/j.fuel.2015.10.067.
  • Ronney, P. D. 1994. Laser versus conventional ignition of flames. Optical Engineering 33 (2):510–21. doi:10.1117/12.152237.
  • Salih, A., and M. Chaichan. 2014. The effect of initial pressure and temperature upon the laminar burning velocity and flame stability for propane-air mixtures. Global Advanced Research Journal of Engineering, Technology and Innovation 3 (7):154–201.
  • Shrivastava, D., K. Dharmashi, and A. Agarwal. 2011. Flame kernel characterization of laser ignition of natural gas–air mixture in a constant volume combustion chamber. Optics and Lasers in Engineering 49 (9–10):1201–09. doi:10.1016/j.optlaseng.2011.04.015.
  • Shrivastav, D., and A. Agarwal. 2018. Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel 214:322–29. doi:10.1016/j.fuel.2017.10.012.
  • Singh, A., U. Padhi, R. Joarder, and A. Roy. 2019. Spatio-temporal effect of the breakdown zone in the laser-initiated ignition of atomized ethyl alcohol-air mixture. Applied Energy 247:140–54. doi:10.1016/j.apenergy.2019.04.045.
  • Tomesh, S., S. Pravesh, B. Giacomo, and M. Rakesh. 2022. Alcohols as alternative fuels in compression ignition engines for sustainable transportation: A review, energy Resources, Part A: Recovery. Utilization, and Environmental Effects 22 (4):8736–59. doi:10.1080/15567036.2022.2124326.
  • Vancoillie, J., J. Demuynck, J. Galle, S. Verhelst, and J. A. van Oijen. 2012. A laminar burning velocity and flame thickness correlation for ethanol–air mixtures valid at spark-ignition engine conditions. Fuel 102:460–69. doi:10.1016/j.fuel.2012.05.022.
  • Wanga, C., L. Yanfei, X. Cangsu, T. Badawy, A. Sahu, and C. Jiang. 2019. Methanol as an octane booster for gasoline fuels. Fuel 248:76–84. doi:10.1016/j.fuel.2019.02.128.
  • Zhang, Z., M. Wen, Y. Cui, Z. Ming, T. Wang, C. Zhang, J. Dankwa Ampah, C. Jin, H. Huang, and H. Liu. 2022. Effects of methanol application on carbon emissions and pollutant emissions using a passenger vehicle. Processes 10 (3):525. doi:10.3390/pr10030525.
  • Zhennan, Z., K. Liang, X. Chen, Z. Meng, H. Wenbin, and H. Song. 2020. Laminar flame characteristics of premixed methanol–water–air mixture. Energies 13 (24):6504.
  • Zhu, I., S. Wang, M. Raza, Y. Feng, L. Jing, Y. Mao, Y. Liang, Y. Qian, and L. Xingcai. 2021. Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling. Combustion and Flame 228:1–12. doi:10.1016/j.combustflame.2021.01.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.