70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CoS2@SC modified separator for high-performance lithium-sulfur batteries: suppression of polysulfide shuttling

, , , , , , , , ORCID Icon & show all
Pages 11399-11409 | Received 26 Jun 2023, Accepted 12 Aug 2023, Published online: 18 Sep 2023

References

  • Babu, G., N. Masurkar, H. Al Salem, and L. M. R. Arava. 2017. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. Journal of the American Chemical Society 139 (1):171–78. doi:10.1021/jacs.6b08681.
  • Baveja, R., J. Bhattacharya, S. Panchal, R. Fraser, and M. Fowler. 2023. Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. Journal of Energy Storage 70:107967. doi:10.1016/j.est.2023.107967.
  • Beams, R., L. G. Cançado, and L. Novotny. 2015. Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter 27 (8):083002. doi:10.1088/0953-8984/27/8/083002.
  • Chen, L., X. Li, and Y. Xu. 2018. Recent advances of polar transition-metal sulfides host materials for advanced lithium–sulfur batteries. Functional Materials Letters 11 (6):1840010. doi:10.1142/S1793604718400106.
  • Chen, P., Y. Fan, Y. Gao, Q. Liu, Y. Sun, T. Guo, B. Huang, X. Wang, and Y. Fu. 2020. Design and Construction of Graphitic/Amorphous heterophase porous carbon with a lotus-leaf-like surface microstructure for high-performance Li-ion and na-ion batteries. Industrial & Engineering Chemistry Research 59 (25):11475–84. doi:10.1021/acs.iecr.0c00129.
  • Chen, S., Y. Ming, B. Tan, and S. Chen. 2020. Carbon-free sulfur-based composite cathode for advanced lithium-sulfur batteries: A case study of hierarchical structured CoMn2O4 hollow microspheres as sulfur immobilizer. Electrochimica acta 329:135128. doi:10.1016/j.electacta.2019.135128.
  • Cheng, X. B., J. Q. Huang, and Q. Zhang. 2018. Review-Li metal anode in working lithium-sulfur batteries. Journal of the Electrochemical Society 165 (1):A6058–A72. doi:10.1149/2.0111801jes.
  • Dong, C., W. Gao, B. Jin, and Q. Jiang. 2018. Advances in cathode materials for high-performance lithium-sulfur batteries. iScience 6:151–98. doi:10.1016/j.isci.2018.07.021.
  • Fan, L., M. Li, X. Li, W. Xiao, Z. Chen, and J. Lu. 2019. Interlayer material selection for lithium-sulfur batteries. Joule 3 (2):361–86. doi:10.1016/j.joule.2019.01.003.
  • Fan, Y., Z. Wang, X. Xiong, S. Panchal, R. Fraser, and M. Fowler. 2023. Multi-objective optimization design and experimental investigation for a Prismatic lithium-ion battery integrated with a multi-stage tesla valve-based cold plate. Processes 11 (6):1618. doi:10.3390/pr11061618.
  • Feng, Y., H. Liu, Y. Liu, F. Zhao, J. Li, and X. He. 2021. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium-sulfur batteries. Journal of Energy Chemistry 62:508–15. doi:10.1016/j.jechem.2021.04.008.
  • Feng, Z., J. Zhao, C. Guo, S. Panchal, Y. Xu, J. Yuan, R. Fraser, and M. Fowler. 2023. Optimization of the cooling performance of symmetric battery thermal management systems at high discharge rates. Energy & Fuels 37 (11):7990–8004. doi:10.1021/acs.energyfuels.3c00690.
  • Fu, Y., Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, et al. 2020. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nature Communications 11 (1):845. doi:10.1038/s41467-020-14686-2.
  • He, B. W., Z. Y. Wang, G. R. Li, S. Liu, and X. P. Gao. 2022. Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium–sulfur battery. Journal of Alloys and Compounds 918:165660. doi:10.1016/j.jallcom.2022.165660.
  • Hou, L.-P., X.-Q. Zhang, N. Yao, X. Chen, B.-Q. Li, P. Shi, C.-B. Jin, J.-Q. Huang, and Q. Zhang. 2022. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem 8 (4):1083–98. doi:10.1016/j.chempr.2021.12.023.
  • Jiang, S., M. Chen, X. Wang, Y. Zhang, C. Huang, Y. Zhang, and Y. Wang. 2019. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chemical Engineering Journal 355:478–86. doi:10.1016/j.cej.2018.08.170.
  • Li, M., C. Wang, L. Miao, J. Xiang, T. Wang, K. Yuan, J. Chen, and Y. Huang. 2018. A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S batteries. Journal of Materials Chemistry A 6 (14):5862–69. doi:10.1039/C8TA00459E.
  • Li, Q., Y. Liu, L. Yang, Y. Wang, Y. Liu, Y. Chen, X. Guo, Z. Wu, and B. Zhong. 2021. N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. Journal of Colloid and Interface Science 585:43–50. doi:10.1016/j.jcis.2020.11.084.
  • Liu, J., M. Wang, N. Xu, T. Qian, and C. Yan. 2018. Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials 15:53–64. doi:10.1016/j.ensm.2018.03.017.
  • Liu, Q., Q. Jiang, L. Jiang, J. Peng, Y. Gao, Z. Duan, and X. Lu. 2018. Preparation of SnO2@rGO/CNTs/S composite and application for lithium-sulfur battery cathode material. Applied Surface Science 462:393–98. doi:10.1016/j.apsusc.2018.08.038.
  • Rana, M., M. Li, X. Huang, B. Luo, I. Gentle, and R. Knibbe. 2019. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. Journal of Materials Chemistry A 7 (12):6596–615. doi:10.1039/C8TA12066H.
  • Talele, V., M. S. Patil, S. Panchal, R. Fraser, and M. Fowler. 2023. Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: Dual functionality battery thermal design. Journal of Energy Storage 65:107253. doi:10.1016/j.est.2023.107253.
  • Vashisht, S., D. Rakshit, S. Panchal, M. Fowler, and R. Fraser. 2023. Thermal behaviour of Li-ion battery: An improved electrothermal model considering the effects of depth of discharge and temperature. Journal of Energy Storage 70:107797. doi:10.1016/j.est.2023.107797.
  • Wang, J. L., R. Du, C. B. Yu, C. Y. Xu, and Z. Y. Shi. 2022. Application of transition metal compounds in cathode materials for lithium-sulfur battery. Ionics 28 (12):5275–88. doi:10.1007/s11581-022-04771-5.
  • Wang, N., Y. Hong, T. X. Liu, Q. Wang, and J. Huang. 2021. Sucrose derived microporous–mesoporous carbon for advanced lithium–sulfur batteries. Ceramics International 47 (1):899–906. doi:10.1016/j.ceramint.2020.08.202.
  • Waqas, M., Y. Han, D. Chen, S. Ali, C. Zhen, C. Feng, B. Yuan, J. Han, and W. He. 2020. Molecular ‘capturing’and ‘seizing’MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries. Energy Storage Materials 27:333–41. doi:10.1016/j.ensm.2020.02.015.
  • Wei, Z., Y. Ren, J. Sokolowski, X. Zhu, and G. Wu. 2020. Mechanistic understanding of the role separators playing in advanced lithium‐sulfur batteries. InfoMat 2 (3):483–508. doi:10.1002/inf2.12097.
  • Wu, J., X. Li, H. Zeng, Y. Xue, F. Chen, Z. Xue, Y. Ye, and X. Xie. 2019. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium–sulfur batteries. Journal of Materials Chemistry A 7 (13):7897–906. doi:10.1039/C9TA00458K.
  • Wu, J., H. Zeng, X. Li, H. Pei, Z. Xue, Y.-S. Ye, and X. Xie. 2019. Dual-functional interlayer based on radially oriented ultrathin MoS2 nanosheets for high-performance lithium–sulfur batteries. ACS Applied Energy Materials 2 (3):1702–11. doi:10.1021/acsaem.8b01805.
  • Xiang, Y., J. Li, J. Lei, D. Liu, Z. Xie, D. Qu, K. Li, T. Deng, and H. Tang. 2016. Advanced separators for lithium‐ion and lithium–sulfur batteries: A review of recent progress. ChemSuschem 9 (21):3023–39. doi:10.1002/cssc.201600943.
  • Xu, J., K. Liu, M. A. Khan, H. Wang, T. He, H. Zhao, D. Ye, Y. Tang, and J. Zhang. 2022. Sub-zero temperature electrolytes for lithium-sulfur batteries: Functional mechanisms, challenges and perspectives. Chemical Engineering Journal 443:136637. doi:10.1016/j.cej.2022.136637.
  • Yang, X., X. Gao, Q. Sun, S. P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L. Y. Kuo, and J. Rohrer. 2019. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high‐sulfur‐loading Li–S batteries. Advanced Materials 31 (25):1901220. doi:10.1002/adma.201901220.
  • Yang, Y., H. Xu, S. Wang, Y. Deng, X. Qin, X. Qin, and G. Chen. 2019. N-doped carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries. Electrochimica acta 297:641–49. doi:10.1016/j.electacta.2018.12.009.
  • Ye, Z., Y. Jiang, T. Feng, Z. Wang, L. Li, F. Wu, and R. Chen. 2020. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 70:104532. doi:10.1016/j.nanoen.2020.104532.
  • Yu, J., J. Xiao, A. Li, Z. Yang, L. Zeng, Q. Zhang, Y. Zhu, and L. Guo. 2020. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high‐performance Li‐S batteries. Angewandte Chemie International Edition 59 (31):13071–78. doi:10.1002/anie.202004914.
  • Yuan, Z., H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, and Q. Zhang. 2016. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Letters 16 (1):519–27. doi:10.1021/acs.nanolett.5b04166.
  • Zhai, P.-Y., H.-J. Peng, X.-B. Cheng, L. Zhu, J.-Q. Huang, W. Zhu, and Q. Zhang. 2017. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Materials 7:56–63. doi:10.1016/j.ensm.2016.12.004.
  • Zhang, L., Y. Wang, Z. Niu, and J. Chen. 2019. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 141:400–16. doi:10.1016/j.carbon.2018.09.067.
  • Zhang, P., L. Yue, Q. Liang, H. Gao, Q. Yan, and L. Wang. 2023. A review of transition metal compounds as functional separators for lithium-sulfur batteries. ChemistrySelect 8 (1):e202203352. doi:10.1002/slct.202203352.
  • Zhang, Y., Y. Lin, L. He, V. Murugesan, G. Pawar, B. M. Sivakumar, H. Ding, D. Ding, B. Liaw, and E. J. Dufek. 2020. Dual functional Ni3S2@ ni core–shell nanoparticles decorating nanoporous carbon as cathode Scaffolds for lithium–sulfur battery with lean electrolytes. ACS Applied Energy Materials 3 (5):4173–79. doi:10.1021/acsaem.0c00568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.