87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of natural and forced convection mixed mode UV tent house solar dryer for potato drying

, , , ORCID Icon, ORCID Icon, , & show all
Pages 11482-11504 | Received 19 Apr 2023, Accepted 13 Sep 2023, Published online: 22 Sep 2023

References

  • Abdalla, M., and H. Abuquba. 2023. Natural cooling of two axis tracking photovoltaic module. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (1):2436–52. doi:10.1080/15567036.2019.1663300.
  • Abdullah, K., and Mursalim. 1997. Drying of vanilla pods using a greenhouse effect solar dryer. Drying Technology 15 (2):685–98. doi:10.1080/07373939708917254.
  • Aghbashlo, M., M. H. Kianmehr, and A. Arabhosseini. 2009. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversion and Management 50 (5):1348–55. doi:10.1016/j.enconman.2009.01.004.
  • Ahmad, A., and O. Prakash. 2021. Development of mathematical model for drying of crops under passive greenhouse solar dryer. Materials Today: Proceedings 47:6227–30. doi:10.1016/j.matpr.2021.05.180.
  • Almuhanna, E. A. 2012. Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the eastern province of Saudi Arabia: Part I: Thermal performance analysis of a solar dryer. Journal of Agricultural Science 4 (3):237. doi:10.5539/jas.v4n3p237.
  • Anil, K., P. Om, K. Ajay, and T. Abhishek. 2013. Experimental analysis of greenhouse dryer in no-load conditions. Journal of Environmental Research and Development 7 (4):1399.
  • Badaoui, O., S. Hanini, A. Djebli, B. Haddad, and A. Benhamou. 2019. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy 133:144–55. doi:10.1016/j.renene.2018.10.020.
  • Bala, B. K., and M. R. A. Mondol. 2001. Experimental investigation on solar drying of fish using solar tunnel dryer. Drying Technology 19 (2):427–36. doi:10.1081/DRT-100102915.
  • Barnwal, P., and G. N. Tiwari. 2008. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 82 (12):1131–44. doi:10.1016/j.solener.2008.05.012.
  • Bekkioui, N. 2021. Performance comparison and economic analysis of three solar dryer designs for wood using a numerical simulation. Renewable Energy 164:815–23. doi:10.1016/j.renene.2020.09.126.
  • Chabane, F., N. Moummi, and A. Brima. 2019. An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (2):1–15. doi:10.1080/15567036.2019.1670755.
  • Chaudhari, A. D., and S. P. Salve. 2014. A review of solar dryer technologies. International Journal of Research in Advent Technology 2 (2):218–32.
  • Chauhan, P. S., and A. Kumar. 2017. Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode. Energy 118:1264–74. doi:10.1016/j.energy.2016.11.006.
  • Chauhan, P. S., and A. Kumar. 2018. Thermal analysis of insulated north-wall greenhouse with solar collector under passive mode. International Journal of Sustainable Energy 37 (4):325–39. doi:10.1080/14786451.2016.1261866.
  • Chauhan, P. S., A. Kumar, and C. Nuntadusit. 2018. Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Solar Energy 162:205–16. doi:10.1016/j.solener.2018.01.023.
  • Chavan, A., V. Vitankar, A. Mujumdar, and B. Thorat. 2021. Natural convection and direct type (NCDT) solar dryers: A review. Drying Technology 39 (13):1969–90. doi:10.1080/07373937.2020.1753065.
  • Chiwaula, L. S., C. Kawiya, and P. S. Kambewa. 2020. Evaluating economic viability of large fish solar tent dryers. Agricultural Research 9 (2):270–76. doi:10.1007/s40003-019-00416-8.
  • Deng, Z., S. Cui, K. Kou, D. Liang, X. Shi, and J. Liu. 2021. Dopant-free π-conjugated hole transport materials for highly stable and efficient perovskite solar cells. Frontiers in Chemistry 9:664504. doi:10.3389/fchem.2021.664504.
  • Eltawil, M. A., M. M. Azam, and A. O. Alghannam. 2018. Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy 116:594–605. doi:https://doi.org/10.1016/j.renene.2017.10.007.
  • European Commission. 1997. Energy for the future: RES white paper for a community strategy and action plan; office for official publications of the European communities; European Commission. Luxembourg. 97, p. 599.3. https://europa.eu/documents/comm/white_papers/pdf/com97_599_en.pdf
  • Firfiris, V. K., Z. D. Kaffe, S. D. Kalamaras, A. A. Lithourgidis, A. G. Martzopoulou, and T. A. Kotsopoulos. 2022. A prototype passive solar drying System: Exploitation of the solar chimney Effect for the drying of potato and banana. Applied Sciences 12 (22):11784. https://www.mdpi.com/1956526.
  • Fudholi, A., S. Mat, D. F. Basri, M. H. Ruslan, and K. Sopian. 2016. Performances analysis of greenhouse solar dryer with heat exchanger. Contemporary Engineering Sciences 9 (3):135–44. doi:10.12988/ces.2016.512322.
  • Hadjiat, M. M., A. Mraoui, S. Ouali, E. H. Kuzgunkaya, K. Salhi, A. A. Ouali, N. Benaouda, and K. Imessad. 2021. Assessment of geothermal energy use with thermoelectric generator for hydrogen production. International Journal of Hydrogen Energy 46 (75):37545–55. doi:10.1016/j.ijhydene.2021.06.130.
  • Hamdi, I., S. Kooli, A. Elkhadraoui, Z. Azaizia, F. Abdelhamid, and A. Guizani. 2018. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy 127:936–46. doi:10.1016/j.renene.2018.05.027.
  • Hempattarasuwan, P., P. Somsong, K. Duangmal, M. Jaskulski, J. Adamiec, and G. Srzednicki. 2019. Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Drying Technology 38 (1–2):48–54. doi:10.1080/07373937.2019.1609495.
  • Iqbal, W., H. Yumei, Q. Abbas, M. Hafeez, M. Mohsin, A. Fatima, M. A. Jamali, M. Jamali, A. Siyal, and N. Sohail. 2019. Assessment of wind energy potential for the production of renewable hydrogen in Sindh province of Pakistan. Processes 7 (4):196. doi:10.3390/pr7040196.
  • Jain, D., and G. N. Tiwari. 2004. Effect of greenhouse on crop drying under natural and forced convection II. Thermal modeling and experimental validation. Energy Conversion and Management 45 (17):2777–93. doi:10.1016/j.enconman.2003.12.011.
  • Janjai, S. 2012. A greenhouse type solar dryer for small-scale dried food industries: Development and dissemination. International Journal of Energy and Environment 3 (3):383–98.
  • Jurasz, J., F. A. Canales, A. Kies, M. Guezgouz, and A. Beluco. 2020. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 195:703–24. doi:10.1016/j.solener.2019.11.087.
  • Khan, B. H. 2006. Non-conventional energy resources. New Delhi: Tata McGraw-Hill Education.
  • Khanlari, A., A. Sözen, C. Şirin, A. D. Tuncer, and A. Gungor. 2020. Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater. Journal of Cleaner Production 251:119672. doi:10.1016/j.jclepro.2019.119672.
  • Kumar, S., J. S. Parihar, L. Kumer, H. K. Ghritlahre, M. Verma, and S. Shekhar. 2022. Performance evaluation of cabinet solar dryer using ultraviolet (UV) sheet. Materials Today: Proceedings 56:2735–41. doi:10.1016/j.matpr.2021.10.001.
  • Kumar, A., and G. N. Tiwari. 2007. Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes. Journal of Food Engineering 79 (4):1337–50. doi:10.1016/j.jfoodeng.2006.04.026.
  • Kumar, Y., M. Verma, H. K. Ghritlahre, and P. Verma. 2022. Recent developments in the thermal performance of flat plate solar water heaters with reflectors-A review. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (4):9448–75. doi:10.1080/15567036.2022.2131940.
  • Kushwah, A., A. Kumar, A. Pal, and M. K. Gaur. 2021. Experimental analysis and thermal performance of evacuated tube solar collector assisted solar dryer. Materials Today: Proceedings 47:5846–51. doi:10.1016/j.matpr.2021.04.243.
  • Li, R., M. Liu, S. K. Matta, A. Hiltunen, Z. Deng, C. Wang, Z. Dai, S. P. Russo, P. Vivo, and H. Zhang. 2021. Sulfonated dopant‐free hole‐transport material promotes interfacial charge transfer dynamics for highly stable perovskite solar cells. Advanced Sustainable Systems 5 (12):2100244. doi:10.1002/adsu.202100244.
  • Lingayat, A., V. P. Chandramohan, and V. R. K. Raju. 2017. Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia 109:409–16. doi:10.1016/j.egypro.2017.03.041.
  • Lithi, U. J., S. Surovi, M. Faridullah, and K. C. Roy. 2020. Effects of drying technique on the quality of Mola (amblypharyngodonmola) dried by solar tent dryer and open sun rack dryer. Research in Agriculture Livestock and Fisheries 7 (1):121–28. doi:10.3329/ralf.v7i1.46840.
  • Mani, P., and V. Thirumalai Natesan. 2021. Experimental investigation of drying characteristics of lima beans with passive and active mode greenhouse solar dryers. Journal of Food Process Engineering 44 (5):13667. doi:10.1111/jfpe.13667.
  • Mehta, P., S. Samaddar, P. Patel, B. Markam, and S. Maiti. 2018. Design and performance analysis of a mixed mode tent-type solar dryer for fish-drying in coastal areas. Solar Energy 170:671–81. doi:10.1016/j.solener.2018.05.095.
  • Mellalou, A., W. Riad, S. K. Hnawi, A. Tchenka, A. Bacaoui, and A. Outzourhit. 2021. Experimental and CFD investigation of a modified uneven-span greenhouse solar dryer in no-load conditions under natural convection mode. International Journal of Photoenergy 2021:1–12. doi:10.1155/2021/9918166.
  • Müller, J., G. Reisinger, J. Kisgeci, E. Kotta, M. Tesic, and W. Mühlbauer. 1989. Development of a greenhouse-type solar dryer for medicinal plants and herbs. Solar & Wind Technology 6 (5):523–30. doi:10.1016/0741-983X(89)90086-6.
  • Murugavelh, S., B. Anand, K. Midhun Prasad, R. Nagarajan, and S. Azariah Pravin Kumar. 2019. Exergy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (3):1–17. doi:10.1080/15567036.2019.1679289.
  • Ndukwu, M. C., D. Onyenwigwe, F. I. Abam, A. B. Eke, and C. Dirioha. 2020. Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renewable Energy 154:553–68. doi:10.1016/j.renene.2020.03.016.
  • Olokor, J. O., and F. S. Omojowo. 2009. Adaptation and improvement of a simple solar tent dryer to enhance fish drying. Nature and Science 7 (10):18–24.
  • Parihar, J. S., S. Kumar, L. Kumar, Y. Kumar, H. K. Ghritlahre, M. Verma, A. K. Gupta, S. Agrawal, and S. Shekhar. 2022. Development of novel cabinet solar dryer using UV sheet and its performance evaluation: An experimental study. Solar Energy 239:1–9. doi:10.1016/j.solener.2022.04.043.
  • Prakash, O., and A. Kumar. 2014. Application of artificial neural network for the prediction of jaggery mass during drying inside the natural convection greenhouse dryer. International Journal of Ambient Energy 35 (4):186–92. doi:10.1080/01430750.2013.793455.
  • Prakash, O., and A. Kumar, eds. 2017. Solar drying technology: Concept, design, testing, modeling, economics, and environment. Springer Singapore. doi:10.1007/978-981-10-3833-4.
  • Prakash, O., A. Kumar, and V. Laguri. 2016. Performance of modified greenhouse dryer with thermal energy storage. Energy Reports 2:155–62. doi:10.1016/j.egyr.2016.06.003.
  • Purusothaman, M., and T. N. Valarmathi. 2019. Computational fluid dynamics analysis of greenhouse solar dryer. International Journal of Ambient Energy 40 (8):894–900. doi:10.1080/01430750.2018.1437567.
  • Shrivastava, V., A. S. Yadav, and N. Shrivastava. 2022. Thermal performance assessment of greenhouse solar dryer operated under active mode. In Recent trends in thermal engineering: Select proceedings of ICAST 2020, 75–82. Springer Singapore. doi:10.1007/978-981-16-3132-0_8.
  • Singh, P., and M. K. Gaur. 2020. Review on development, recent advancement and applications of various types of solar dryers. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–21. doi:10.1080/15567036.2020.1806951.
  • Singh, P., and M. K. Gaur. 2021. Heat transfer analysis of hybrid active greenhouse solar dryer attached with evacuated tube solar collector. Solar Energy 224:1178–92. doi:10.1016/j.solener.2021.06.050.
  • Sukhatme, S. P., and J. K. Nayak. 1996. Solar Energy- principles of thermal collection and storage. New Delhi: Tata Mc Graw Hill.
  • Tiwari, G. N. 2004. Solar Energy: Fundamentals, design, modelling and applications. New Delhi: Narosa.
  • Tiwari, G. N., A. Tiwari. 2016. Handbook of solar Energy, Energy systems in electrical Engineering. Springer Science Business Media Singapore. doi:10.1007/978-981-10-0807-8_9.
  • Tiwari, S., and G. N. Tiwari. 2017. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Energy 128:183–95. doi:10.1016/j.energy.2017.04.022.
  • Tuncer, A. D., A. Sözen, A. Khanlari, A. Amini, and C. Şirin. 2020. Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Solar Energy 203:304–16. doi:https://doi.org/10.1016/j.solener.2020.04.030.
  • Verma, G., N. Dewangan, H. K. Ghritlahre, M. Verma, S. Kumar, Y. Kumar, and S. Agrawal. 2023. Experimental investigation of mixed mode ultraviolet tent house solar dryer under natural convection regime. Solar Energy 251:51–67. doi:10.1016/j.solener.2022.12.052.
  • Vigneshkumar, N., M. Venkatasudhahar, P. M. Kumar, A. Ramesh, R. Subbiah, P. M. J. Stalin, V. Suresh, M. N. Kumar, S. Monith, R. Manoj Kumar, et al. 2021. Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM). Materials Today: Proceedings 47:5233–38. doi:10.1016/j.matpr.2021.05.562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.