253
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental evaluation for enhancement of small-scale concentrated solar power ‎systems – a case study ‎for solar cooking

ORCID Icon
Pages 11681-11696 | Received 26 Jun 2023, Accepted 15 Sep 2023, Published online: 28 Sep 2023

References

  • Chilbule, P. V., L. P. Dhole, and N. M. Yewale. 2022. Solar cooking system employing heat pipe solar collector: A review. Materials Today: Proceedings 56:1972–81. doi:10.1016/j.matpr.2021.11.286.
  • Chong, K. K., and M. H. Tan. 2012. Comparison study of two different sun-tracking methods in optical efficiency of heliostat field. International Journal of Photoenergy 2012. doi:10.1155/2012/908364.
  • Duffie, J., and W. Beckman. 2006. Solar Engineering of thermal processes. Third Edit. John Wiley & Sons, Inc.
  • Ehtiwesh, I. A. S., M. C. Coelho, and A. C. M. Sousa. 2016. Exergetic and Environmental life cycle assessment analysis of concentrated solar power plants. Renewable and Sustainable Energy Reviews 56:145–55. doi:10.1016/j.rser.2015.11.066.
  • Ehtiwesh, I. A. S., F. Neto Da Silva, and A. C. M. Sousa. October 17, 2018. Deployment of parabolic trough concentrated solar power plants in North Africa – a case study for Libya. International Journal of Green Energy https://www.tandfonline.com/doi/full/10.1080/15435075.2018.1533474.
  • Ehtiwesh, I. A. S., and A. C. M. Sousa. 2018. Numerical model for the thermal behavior of thermocline storage tanks. Heat & Mass Transfer/Waerme- und Stoffuebertragung 54 (3):831–39. doi:10.1007/s00231-017-2181-6.
  • Eleiwi, M. A., N. D. Mokhlif, and H. F. Saleh. 2023. Improving the performance of the thermal energy storage of the solar water heater by using porous medium and phase change material. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (1):2013–26. doi:10.1080/15567036.2023.2185316.
  • El Moussaoui, N., S. Talbi, I. Atmane, K. Kassmi, K. Schwarzer, H. Chayeb, and N. Bachiri. 2020. Feasibility of a New design of a parabolic trough solar thermal cooker (PSTC). Solar Energy 201 (February):866–71.
  • El-Sebaii, A. A., and A. Ibrahim. 2005. Experimental testing of a box-type solar cooker using the standard procedure of cooking power. Renewable Energy 30 (12):1861–71. doi:10.1016/j.renene.2005.01.007.
  • Faheem, M., L. Jizhan, M. W. Akram, M. U. Khan, P. Yongphet, M. Tayyab, and M. Awais. 2020. Design optimization, fabrication, and performance evaluation of solar parabolic trough collector for domestic applications. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 0 (00):1–20. doi:10.1080/15567036.2020.1806407.
  • Farzanehnia, A., M. Khatibi, M. Sardarabadi, and M. Passandideh-Fard. 2019. Experimental investigation of multiwall carbon Nanotube/Paraffin based heat sink for electronic device thermal management. Energy Conversion and Management 179:314–25.
  • Fontalvo, A., A. Shirazi, and J. Pye. 2020. System-level simulation of molten salt small-scale CSP. AIP Conference Proceedings 30015:1–10.
  • Gamil, A., S. I. Ul-Haq Gilani, and H. H. Al-Kayiem. 2013. Simulation of incident solar power input to fixed target of central receiver system in Malaysia. In 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology Selangor, Malaysia, 92–97.
  • Göttsche, J., B. Hoffschmidt, S. Schmitz, M. Sauerborn, R. Buck, E. Teufel, K. Badstübner, D. Ifland, and C. Rebholz. 2010. Solar concentrating systems using small mirror arrays. Journal of Solar Energy Engineering, Transactions of the ASME 132 (1):0110031–34. doi:10.1115/1.4000332.
  • Harmim, A., M. Merzouk, M. Boukar, and M. Amar. 2012. Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator. Energy 47 (1):471–80. doi:10.1016/j.energy.2012.09.037.
  • Herez, A., M. Ramadan, and M. Khaled. 2018. Review on solar cooker systems: Economic and Environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81 (August 2017):421–32. doi:10.1016/j.rser.2017.08.021.
  • Hoigebazar, P., and J. Valder. 2020. Analysis and comparison of compound parabolic solar concentrator configurations for box type solar cooker. AIP Conference Proceedings 2236 Karnataka, India.
  • Kaushik, S. C., and M. K. Gupta. 2008. Energy and exergy efficiency comparison of community-size and domestic-size paraboloidal solar cooker performance. Energy for Sustainable Development 12 (3):60–64. doi:10.1016/S0973-0826(08)60440-8.
  • Khatri, R., R. Goyal, and R. Kumar Sharma. 2022. Solar cooking in India: Implementation, barriers & improvement aspects. Materials Today: Proceedings 63:309–13. doi:10.1016/j.matpr.2022.03.136.
  • Mekonnen, B. A., K. W. Liyew, and M. T. Tigabu. 2020. Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker. Case Studies in Thermal Engineering 22 (October):100766. doi:10.1016/j.csite.2020.100766.
  • Michalsky, J. J. 1988. The astronomical Almanac’s algorithm for approximate solar position (1950-2050). Solar Energy 40 (3):227–35. doi:10.1016/0038-092X(88)90045-X%0A.
  • Montes, M., A. Abánades, J. Martínez-Val, and M. Valdés. December 2009. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy 8312:2165–76.
  • Özcan, A., A. G. Devecioğlu, and V. Oruç. 2022. Experimental and numerical analysis of a parabolic trough solar collector for water heating application. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (2):4184–203. doi:10.1080/15567036.2021.1924317.
  • Öztürk, H. H. 2004. Experimental determination of energy and exergy efficiency of the solar parabolic-cooker. Solar Energy 77 (1):67–71. doi:10.1016/j.solener.2004.03.006.
  • Rafiei, A., R. Loni, M. H. Ahmadi, G. Najafi, E. Bellos, F. Rajaee, and E. A. Asli-Ardeh. 2020. Sensitivity analysis of a parabolic trough concentrator with linear V‐shape. Energy Science and Engineering 8:3544–60.
  • Sagade, A. A., A. Mawire, R. Palma-Behnke, and N. A. Sagade. 2023. Low-cost solar concentrating collector-receiver system as an effective enabler for clean cooking and heating in Urban areas. Solar Energy Inpress. doi:10.1016/j.solener.2023.111813.
  • Said, Z., M. Ghodbane, A. K. Tiwari, H. M. Ali, B. Boumeddane, and Z. M. Ali. 2021. 4E (energy, exergy, economic, and environment) examination of a small LFR solar water heater: An experimental and numerical study. Case Studies in Thermal Engineering 27 (October):101277. doi:10.1016/j.csite.2021.101277.
  • Shufat, S. A. A., E. Kurt, and A. Hancerlioğulları. 2019. Modeling and design of azimuth-altitude dual axis solar tracker for maximum solar energy generation. International Journal of Renewable Energy Development 8 (1):7–13.
  • Upadhyay, B. H., A. J. Patel, and P. V. Ramana. 2020. Comparative study of parabolic trough collector for low-temperature water heating. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–17. doi:10.1080/15567036.2020.1779874.
  • Zamani, H., M. Moghiman, and A. Kianifar. 2015. Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM). Renewable Energy 81:753–59. doi:10.1016/j.renene.2015.03.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.