139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of the flow and heat transfer characteristics of microencapsulated phase change slurry

ORCID Icon &
Pages 11925-11942 | Received 26 Jul 2023, Accepted 22 Sep 2023, Published online: 12 Oct 2023

References

  • Abdeali, G., and A. R. Bahramian. 2022. A comprehensive review on rheological behavior of phase change materials fluids (slurry and emulsion): The way toward energy efficiency. Journal of Energy Storage 55:105549. doi:10.1016/j.est.2022.105549.
  • Afsharpanah, F., S. S. Mousavi Ajarostaghi, and M. Arıcı. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design, International Communications in Heat and Mass Transfer 137:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Afsharpanah, F., K. Pakzad, S. S. Mousavi Ajarostaghi, and M. Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces, Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Afsharpanah, F., K. Pakzad, S. S. Mousavi Ajarostaghi, S. Poncet, and K. Sedighi. 2022. Accelerating the charging process in a shell and dual coil ice storage unit equipped with connecting plates. International Journal of Energy Research 46 (6):7460–78. doi:10.1002/er.7654.
  • Alam, T. E., J. S. Dhau, D. Y. Goswami, and E. Stefanakos. 2015. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Applied Energy 154:92–101. doi:10.1016/j.apenergy.2015.04.086.
  • Alisetti, E. L., and S. K. Roy. 2000. Forced convection heat transfer to phase change material slurries in circular ducts. Journal of Thermophysics and Heat Transfer 14 (1):115–18. doi:10.2514/2.6499.
  • Cárdenas-Ramírez, C., F. Jaramillo, and M. Gómez. 2020. Systematic review of encapsulation and shape-stabilization of phase change materials, Journal Energy Storage 30:101495, doi:10.1016/j.est.2020.101495.
  • Chinnasamy, V., J. Heo, S. Jung, H. Lee, and H. Cho. 2023. Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy 262:125463. doi:10.1016/j.energy.2022.125463.
  • Dai, H., W. Chen, Q. Cheng, Y. Liu, and X. Dong. 2021. Analysis of thermo-hydraulic characteristics in the porous-wall microchannel with microencapsulated phase change slurry. International Journal of Heat and Mass Transfer 165:120634. doi:10.1016/j.ijheatmasstransfer.2020.120634.
  • Dai, H., and Y. Liu. 2023. Entropy generation analysis on thermo-hydraulic characteristics of microencapsulated phase change slurry in wavy microchannel with porous fins. Applied Thermal Engineering 219:119440. doi:10.1016/j.applthermaleng.2022.119440.
  • Dai, H., C. Zhu, and Y. Liu. 2022. Thermal performance of double-layer porous-microchannel with phase change slurry. Applied Thermal Engineering 211:118457. doi:10.1016/j.applthermaleng.2022.118457.
  • Dou, G., G. Peng, Y. Hu, Y. Sun, H. Jiang, and T. Zhang. 2022. Effects of interface bonding on the macro-mechanical properties of microcapsule/epoxy resin composites. Surfaces Interfaces 34:102310. doi:10.1016/j.surfin.2022.102310.
  • Ghasemi, K., S. Tasnim, and S. Mahmud. 2022. PCM, nano/microencapsulation and slurries: A review of fundamentals, categories, fabrication, numerical models and applications. Sustainable Energy Technologies. 52:102084. doi:10.1016/j.seta.2022.102084.
  • Gunn, D. J. 1978. Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer 21 (4):467–76. doi:10.1016/0017-9310(78)90080-7.
  • Hu, X., and Y. Zhang. 2002. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: Laminar flow in a circular tube with constant heat flux. International Journal of Heat and Mass Transfer 45 (15):3163–72. doi:10.1016/S0017-9310(02)00034-0.
  • Jiang, Y. Y., and P. Zhang. 2012. Numerical investigation of slush nitrogen flow in a horizontal pipe. Chemical Engineering Science 73:169–80. doi:10.1016/j.ces.2012.01.027.
  • Khademi, A., K. Shank, S. A. A. Mehrjardi, S. Tiari, G. Sorrentino, Z. Said, A. J. Chamkha, and S. Ushak. 2022. A brief review on different hybrid methods of enhancement within latent heat storage systems, Journal Energy Storage 54:105362. doi:10.1016/j.est.2022.105362.
  • Konuklu, Y., M. Ostry, H. O. Paksoy, and P. Charvat. 2015. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Buildings 106:134–55. doi:10.1016/j.enbuild.2015.07.019.
  • Kumar, N., M. K. Gopaliya, and D. R. Kaushal. 2019. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Particulate Science Technology 37 (2):232–50. doi:10.1080/02726351.2017.1364313.
  • Liu, L., C. Zhu, and G. Fang. 2018. Numerical evaluation on the flow and heat transfer characteristics of microencapsulated phase change slurry flowing in a circular tube. Applied Thermal Engineering 144:845–53. doi:10.1016/j.applthermaleng.2018.08.102.
  • M S, A., and K. Venkatasubbaiah. 2022. Numerical investigation on heat transfer performance of a confined slot jet impingement with different MEPCM-water slurries using two-phase Eulerian–Eulerian model. Thermal Science and Engineering Progress 33:101315. doi:10.1016/j.tsep.2022.101315.
  • Ma, Y., M. Zou, W. Chen, W. Luo, X. Hu, S. Xiao, L. Luo, X. Jiang, and Q. Li. 2023. A structured phase change material integrated by MXene/AgNWs modified dual-network and polyethylene glycol for energy storage and thermal management. Applied Energy 349:121658. doi:10.1016/j.apenergy.2023.121658.
  • Mo, S., J. Ye, L. Jia, andY. Chen. 2022. Properties and performance of hybrid suspensions of MPCM/nanoparticles for LED thermal management, Energy 239:122650. doi:10.1016/j.energy.2021.122650.
  • Ms, A., and K. Venkatasubbaiah. 2021. Numerical investigation on laminar forced convection of MEPCM-water slurry flow through a micro-channel using Eulerian-Eulerian two-phase model. Thermal Science and Engineering Progress 22:100803. doi:10.1016/j.tsep.2020.100803.
  • Mustapha, A., Y. Wang, Y. Ding, and Y. Li. 2022. Supercooling elimination of cryogenic-temperature microencapsulated phase change materials (MPCMs) and the rheological behaviors of their suspension. Journal of Materials Research and Technology 21:2277–95. doi:10.1016/j.jmrt.2022.10.010.
  • Prateepmaneerak, N., A. Chaiyasat, D. Kaewpa, and P. Chaiyasat. 2022. Innovative bifunctional heat storage nanocapsules containing polymerizable surfactant for antimicrobial thermoregulating clothes. Colloids Surfaces A Physicochem Engineering Aspects 653:129954. doi:10.1016/j.colsurfa.2022.129954.
  • Qiu, Z., and L. Li. 2020. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux. Sustainable Cities and Society 52:101786. doi:10.1016/j.scs.2019.101786.
  • Ran, F., H. Zhang, C. Xu, and G. Fang. 2022. Thermal performances evaluation of a flat-plate solar collector using microencapsulated phase-change slurry as heat transfer medium. International Journal of Energy Research 46 (10):14044–59. doi:10.1002/er.8121.
  • Rathore, P. K. S., and S. K. Shukla. 2019. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials 225:723–44. doi:10.1016/j.conbuildmat.2019.07.221.
  • Silva, R., F. A. P. Garcia, P. M. Faia, and M. G. Rasteiro. 2015. Evaluating the performance of the mixture model coupled with high and low Reynolds turbulence closures in the numerical description of concentrated solid-liquid flows of settling particles. The Journal of Computational Multiphase Flows 7 (4):241–57. doi:10.1260/1757-482X.7.4.241.
  • Tripathi, B. M., S. K. Shukla, and P. K. S. Rathore. 2023. A comprehensive review on solar to thermal energy conversion and storage using phase change materials, Journal Energy Storage 72:108280. doi:10.1016/j.est.2023.108280.
  • Wang, L., and G. Lin. 2012. Experimental study on the convective heat transfer behavior of microencapsulated phase change material suspensions in rectangular tube of small aspect ratio. Bubbly Flows: Analysis, Modelling & Calculation 48 (1):83–91. doi:10.1007/s00231-011-0844-2.
  • Xu, Q., L. Zhu, X. Yan, J. Yang, Z. Wang, D. Liu, G. Yang, X. Chen, N. Akkurt, L. Liu, Y. Du, Y. Qiang, and Y. Xiong. 2022. Heat transfer performance by forced convection of microencapsulated phase change material-latent functional thermal fluid flowing in a mini-channels heat sink. Applied Thermal Engineering. 216:119158. doi:10.1016/j.applthermaleng.2022.119158.
  • Yamagishi, Y., H. Takeuchi, A. T. Pyatenko, and N. Kayukawa. 1999. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AIChE Journal 45 (4):696–707. doi:10.1002/aic.690450405.
  • Yan, W.-M., C.-Y. Huang, K.-E. Gao, M. Amani, L.-H. Chien, and A. Homayooni. 2023. Study on the performance enhancement of ice storage and melting processes in an ice-on-coil thermal energy storage system. Journal of Energy Storage 72:108410. doi:10.1016/j.est.2023.108410.
  • Yang, X., X. Wang, Z. Liu, X. Luo, and J. Yan. 2022. Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit. Solar Energy Materials and Solar Cells 236:111527. doi:10.1016/j.solmat.2021.111527.
  • Zeng, R., X. Wang, B. Chen, Y. Zhang, J. Niu, X. Wang, and H. Di. 2009. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl Applied Energy 86 (12):2661–70. doi:10.1016/j.apenergy.2009.04.025.
  • Zhang, B., S. Li, X. Fei, H. Zhao, and X. Lou. 2020. Enhanced mechanical properties and thermal conductivity of paraffin microcapsules shelled by hydrophobic-silicon carbide modified melamine-formaldehyde resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 603:125219. doi:10.1016/j.colsurfa.2020.125219.
  • Zhang, C., W. Huang, C. Li, J. Ouyang, H. Wang, J. Xu, and H. Luo. 2022. Numerically investigating the effects of geometry on hydrodynamics and particle suspension performance in continuous oscillatory baffled crystallizers. Chemical Engineering Science 249:117352. doi:10.1016/j.ces.2021.117352.
  • Zhang, H., X. Wang, and D. Wu. 2010. Silica encapsulation of n-octadecane via sol–gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. Journal of Colloid and Interface Science 343 (1):246–55. doi:10.1016/j.jcis.2009.11.036.
  • Zhang, J., Z. Cao, S. Huang, X. Huang, Y. Han, C. Wen, J. H. Walther, and Y. Yang. 2023. Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles. Applied Energy 342:121158. doi:10.1016/j.apenergy.2023.121158.
  • Zhang, P., and W. Q. Qian. 2013. Investigation of laminar convective heat transfer of phase change material slurries in circular tubes. Journal of Engineering Thermophysics 34:1914–17. in Chinese.
  • Zhang, Y., M. He, G. Yuan, Y. Wang, T. Zhang, T. Wen, P. Gao, and Z. Wang. 2023. Effect of compact fin structure on heat transfer performance of ice storage unit during freezing. Applied Thermal Engineering 230:120775. doi:10.1016/j.applthermaleng.2023.120775.
  • Zhang, Y., X. Hu, Q. Hao, and X. Wang. 2003. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: Internal heat source model and its application. Science in China Series E: Technological Sciences 46 (2):131–40. doi:10.1360/03ye9014.
  • Zhang, Y., X. Hu, and X. Wang. 2003. Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. Bubbly Flows: Analysis, Modelling & Calculation 40 (1):59–66. doi:10.1007/s00231-003-0410-7.
  • Zhang, Y., Y. Xu, R. Lu, S. Zhang, A. M. Hai, and B. Tang. 2023. Form-stable cold storage phase change materials with durable cold insulation for cold chain logistics of food. Postharvest Biology and Technology 203:112409. doi:10.1016/j.postharvbio.2023.112409.
  • Zhang, Z., G. Shi, S. Wang, X. Fang, and X. Liu. 2013. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renewable Energy 50:670–75. doi:10.1016/j.renene.2012.08.024.
  • Zhao, J., J. Zhou, H. Li, and X. Li. 2022. Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion. Powder Technology 399:117189. doi:10.1016/j.powtec.2022.117189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.