103
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A critical review on the various techniques for the thermal performance improvement of solar air heaters

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11819-11852 | Received 06 Feb 2023, Accepted 23 Sep 2023, Published online: 09 Oct 2023

References

  • Aghaie, A. Z., A. B. Rahimi, and A. Akbarzadeh. 2015. A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel e a Taguchi approach. Renew Energy 83:47–54. doi:10.1016/j.renene.2015.04.016.
  • Aharwal, K. R., B. K. Gandhi, and J. S. Saini. 2008. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable Energy 33 (4):585–96. doi:10.1016/j.renene.2007.03.023.
  • Aharwal, K. R., B. K. Gandhi, and J. S. Saini. 2009. International journal of heat and Mass transfer heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate. International Journal of Heat and Mass Transfer 52 (25–26):5970–77. doi:10.1016/j.ijheatmasstransfer.2009.05.032.
  • Algarni, S., V. Tirth, A. Saxena, and P. Gupta. 2022. A comparative study of different low-cost sensible heat storage materials for solar air heating: An experimental approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):912–33. doi:10.1080/15567036.2022.2050854.
  • Babu, A. K., G. Kumaresan, V. A. A. Raj, and R. Velraj. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews 90 (December 2016):536–56. doi:10.1016/j.rser.2018.04.002.
  • Bayrak, F., H. F. Oztop, and A. Hepbasli. 2013. Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy & Buildings 57:338–45. doi:10.1016/j.enbuild.2012.10.055.
  • Beccali, M., P. Finocchiaro, and B. Nocke. 2009a. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate. Solar Energy 83 (10):1828–46. doi:10.1016/j.solener.2009.06.015.
  • Beccali, M., P. Finocchiaro, and B. Nocke. 2009b. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid/thermal solar collectors for applications in hot and humid climate. Solar Energy 83 (10):1828–46. doi:10.1016/j.solener.2009.06.015.
  • Bopche, S. B., and M. S. Tandale. 2009. International journal of heat and Mass transfer Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. International Journal of Heat and Mass Transfer 52 (11–12):2834–48. doi:10.1016/j.ijheatmasstransfer.2008.09.039.
  • Boulemtafes-Boukadoum, A., C. Abid, and A. Benzaoui. 2020. 3D numerical study of the effect of aspect ratio on mixed convection air flow in upward solar air heater. International Journal of Heat and Fluid Flow 84 (January 2019):108570. doi:10.1016/j.ijheatfluidflow.2020.108570.
  • Chabane, F., F. Grira, N. Moummi, and A. Brima. 2019. Experimental study of a solar air heater by adding an arrangement of transverse rectangular baffles perpendicular to the air stream. International Journal of Green Energy 16 (14):1264–77. doi:10.1080/15435075.2019.1671401.
  • Chauhan, R., and N. S. Thakur. 2013. Heat transfer and friction factor correlations for impinging jet solar air heater. Experimental Thermal & Fluid Science 44:760–67. doi:10.1016/j.expthermflusci.2012.09.019.
  • Chhaparwal, G. K., A. Srivastava, and R. Dayal. 2019. Artificial repeated-rib roughness in a solar air heater – a review. Solar Energy 194 (August):329–59. doi:10.1016/j.solener.2019.10.011.
  • Damseh, R. A., and R. A. Damseh. 1998. Pergamon solar air heaters abstract–A. Renewable Energy 13 (2):153–63. doi:10.1016/S0960-1481(97)00093-1.
  • Dezan, D. J., A. D. Rocha, L. O. Salviano, and W. G. Ferreira. 2020. Thermo-hydraulic optimization of a solar air heater duct with non-periodic rows of rectangular winglet pairs. Solar Energy 207 (June):1172–90. doi:10.1016/j.solener.2020.06.112.
  • Dutta, P., and A. Hossain. 2005. Internal cooling augmentation in rectangular channel using two inclined baffles. International Journal of Heat and Fluid Flow 26 (2):223–32. doi:10.1016/j.ijheatfluidflow.2004.08.001.
  • Ebrahim Momin, A. M., J. S. Saini, and S. C. Solanki. 2002. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer. 45 (16):3383–96. doi. doi:https://doi.org/10.1016/S0017-9310(02)00046-7.
  • El-Said, E. M. S. 2020. Numerical investigations of fluid flow and heat transfer characteristics in solar air collector with curved perforated baffles. 2 (January):1–15. doi:10.1002/eng2.12142.
  • El-Said, E. M. S., M. M. Abou Al-Sood, E. A. Elsharkawy, and B. A. Gamal. 2022. Tubular solar air heater using finned semi-cylindrical absorber plate with swirl flow: Experimental investigation. Solar Energy 236:879–97. doi:10.1016/j.solener.2022.03.054.
  • Farzan, H., E. H. Zaim, and T. Amiri. 2022. Performance investigation on a new solar air heater using phase change material/expanded metal mesh composite as heat storage unit. Journal of Energy Storage 47:103602. doi:10.1016/j.est.2021.103602.
  • Fiuk, J. J., and K. Dutkowski. 2019. Experimental investigations on thermal e ffi ciency of a prototype passive solar air collector with wavelike baffles. Solar Energy 188 (March):495–506. doi:10.1016/j.solener.2019.06.030.
  • Forson, F. K., M. A. A. Nazha, and H. Rajakaruna, Experimental and simulation studies on a single pass, double duct solar air heater.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016a. Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering 8:19–31. doi:10.1016/j.csite.2016.03.003.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016b. A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater. Renewable and Sustainable Energy Reviews 54:550–605. doi:10.1016/j.rser.2015.10.025.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016c. ScienceDirect Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Solar Energy 131:275–95. doi:10.1016/j.solener.2016.02.040.
  • Goel, A. K., S. N. Singh, and B. N. Prasad. 2021. “Performance investigation and parametric optimization of an eco-friendly sustainable design solar air heater,” no. March 1–12. doi:10.1049/rpg2.12188.
  • Gupta, D., S. C. Solanki, and J. S. Saini. 1993 Jul. Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Solar Energy 51(1):31–37. doi: 10.1016/0038-092X(93)90039-Q.
  • Gupta, D., S. C. Solanki, and J. S. Saini. 1997. Thermohydraulic performance of solar air heaters with roughened absorber plates. Solar Energy 61 (1):33–42. doi:10.1016/S0038-092X(97)00005-4.
  • Han, J. C., Y. M. Zhang, and C. P. Lee. 1991. Augmented heat transfer in square channels with parallel, crossed, and v-shaped angled ribs. Journal of Heat Transfer 113 (3):590–96. doi:10.1115/1.2910606.
  • Hassan, H., S. Abo-Elfadl, and M. F. El-Dosoky. 2020. An experimental investigation of the performance of new design of solar air heater (tubular). Renew Energy 151:1055–66. doi:10.1016/j.renene.2019.11.112.
  • Hernández, A. L., and J. E. Quiñonez. 2013. Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter fl ow. Renew Energy 55:380–91. doi:10.1016/j.renene.2012.12.050.
  • Ho, C., H. Chang, C. Lin, C. Chao, and Y. Tien. 2015. Analytical and experimental studies of wire mesh packed double-pass solar air heaters under recycling operation. Energy Procedia 75:403–09. doi:10.1016/j.egypro.2015.07.404.
  • Ho, C., H. Chang, R. Wang, and C. Lin. 2012. Performance improvement of a double-pass solar air heater with fins and baffles under recycling operation. Applied Energy 100:155–63. doi:10.1016/j.apenergy.2012.03.065.
  • Ho-Ming, Y., and C. Wen-Hsen. 1991. Efficiency of solar air heaters with baffles. Energy 16 (7):983–87. doi:10.1016/0360-5442(91)90058-T.
  • Jain, S. K., G. Das Agrawal, and R. Misra. 2020. Experimental investigation of thermohydraulic performance of the solar air heater having arc- shaped ribs with multiple gaps. Journal of Thermal Science and Engineering Applications 12 (1):1–10. doi:10.1115/1.4044427.
  • Jain, S. K., R. Misra, A. Kumar, and G. Das Agrawal. 2019. Thermal performance investigation of a solar air heater having discrete V-shaped perforated baffles. International Journal Ambient Energy :1–9. doi:10.1080/01430750.2019.1636874.
  • Jin, D., S. Quan, J. Zuo, and S. Xu. 2019. Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs. Renew Energy 134:78–88. doi:10.1016/j.renene.2018.11.016.
  • Jin, D., J. Zuo, S. Quan, S. Xu, and H. Gao. 2017. Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate. Energy 127:68–77. doi:10.1016/j.energy.2017.03.101.
  • Kabeel, A. E., M. H. Hamed, Z. M. Omara, and A. W. Kandeal. 2017. Solar air heaters: Design con fi gurations, improvement methods and applications – a detailed review. Renewable and Sustainable Energy Reviews 70 (November 2015):1189–206. doi:10.1016/j.rser.2016.12.021.
  • Kant, R., and R. P. Saini. 2016. A review on different techniques used for performance enhancement of double pass solar air heaters. Renewable and Sustainable Energy Reviews 56:941–52. doi:10.1016/j.rser.2015.12.004.
  • Karmare, S. V., and A. N. Tikekar. 2007. Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. International Journal of Heat and Mass Transfer 50 (21–22):4342–51. doi:10.1016/j.ijheatmasstransfer.2007.01.065.
  • Khanlari, A., Güler, HÖ, Tuncer, AD, Şirin C, Bilge, YC, Yılmaz Y, Güngör A. 2020. Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renew Energy 145:1677–92. doi:10.1016/j.renene.2019.07.076.
  • Koolnapadol, N., Y. Kaewkohkiat, P. Promvonge, and S. Eiamsa-Ard. 2014. Thermal behaviors in a solar air heater channel with arc-shaped baffle turbulators. Advanced Materials Research 1051:845–49. doi:10.4028/www.scientific.net/AMR.1051.845.
  • Kulkarni, K., A. Afzal, and K. Kim. 2015. ScienceDirect multi-objective optimization of solar air heater with obstacles on absorber plate. Solar Energy 114:364–77. doi:10.1016/j.solener.2015.02.008.
  • Kumar, R. A., B. G. Babu, and M. Mohanraj. 2017. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. International Journal of Green Energy 14 (15):1238–55. doi:10.1080/15435075.2017.1330753.
  • Kumar, A., J. L. Bhagoria, and R. M. Sarviya. 2009. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs. Energy Conversion and Management 50 (8):2106–17. doi:10.1016/j.enconman.2009.01.025.
  • Kumar, R., and P. Chand. 2017. Performance enhancement of solar air heater using herringbone corrugated fins. Energy 127:271–79. doi:10.1016/j.energy.2017.03.128.
  • Kumar, R., V. Goel, and A. Kumar. 2018. Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis. Renew Energy 115:824–35. doi:10.1016/j.renene.2017.09.010.
  • Kumar, R., V. Goel, P. Singh, A. Saxena, A. S. Kashyap, and A. Rai. 2019. Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage 26:100978. doi:10.1016/j.est.2019.100978.
  • Kumar, A., and M.-H. Kim. 2016. Thermal hydraulic performance in a solar air heater channel with multi V-Type perforated baffles. Energies 9 (7):564. doi:10.3390/en9070564.
  • Kumar, R., A. Kumar, R. Chauhan, and M. Sethi. 2016. Heat transfer enhancement in solar air channel with broken multiple V-type baffle. Case Studies in Thermal Engineering 8:187–97. doi:10.1016/j.csite.2016.07.001.
  • Kumar, R., A. Kumar, and V. Goel. 2017. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy 157 (August):1095–107. doi:10.1016/j.solener.2017.08.071.
  • Kumar, N., A. Kumar, and R. Maithani. 2020. Development of new correlations for heat transfer and pressure loss due to internal conical ring obstacles in an impinging jet solar air heater passage. Thermal Science and Engineering Progress 17 (February):100493. doi:10.1016/j.tsep.2020.100493.
  • Kumar, R., A. Kumar, A. Sharma, R. Chauhan, and M. Sethi. 2017. Experimental study of heat transfer enhancement in a rectangular duct distributed by multi V-perforated baffle of different relative baffle width. Heat and Mass Transfer 53 (4):1289–304. doi:10.1007/s00231-016-1901-7.
  • Kumar, A., and A. Layek. 2019a. Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. Journal of Cleaner Production 232:617–28. doi:10.1016/j.jclepro.2019.05.363.
  • Kumar, A., and A. Layek. 2019b. Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate. Renew Energy 130:687–99. doi:10.1016/j.renene.2018.06.076.
  • Kumar, A., Maithani R. 2017. Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage. Renew Energy 109:461–79. doi:10.1016/j.renene.2017.03.030.
  • Kumar, K., D. R. Prajapati, and S. Samir. 2017. Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with ‘S’ shape ribs. Experimental Thermal & Fluid Science 82:249–61. doi:10.1016/j.expthermflusci.2016.11.012.
  • Kumar, A., R. P. Saini, and J. S. Saini. Numerical simulation of effective efficiency of a discrete multi V-pattern rib solar air channel. Bubbly Flows: Analysis, Modelling & Calculation. doi:10.1007/s00231-015-1712-2.
  • Lanjewar, A., J. L. Bhagoria, and R. M. Sarviya. 2011. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Experimental Thermal & Fluid Science 35 (6):986–95. doi:10.1016/j.expthermflusci.2011.01.019.
  • Mahanand, Y., and J. R. Senapati. Implementation of hybrid rib-turbulators on the thermal performance of solar air heater duct: A collective review. Sustainable Energy Technologies and Assessments 52 (D):102345. doi:10.1016/j.seta.2022.102345.
  • Mahanand, Y. and J.R., Senapati. Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate_ a comparative study _ enhanced Reader.Pdf.
  • Maithani, R., S. Chamoli, A. Kumar, and A. Gupta. 2019. Solar air heater duct roughened with wavy delta winglets: Correlations development and parametric optimization. Heat Mass Transf Und Stoffuebertragung 55 (12):3473–91. doi:10.1007/s00231-019-02651-9.
  • Maithani, R., A. Kumar, and S. Sharma. 2021. Effect of straight slot rib height on heat transfer enhancement of nanofluid flow through rectangular channel. Materials Today: Proceedings 50:1159–63. doi:10.1016/j.matpr.2021.08.040.
  • Maithani, R., and J. S. Saini. 2017a. Performance evaluation of solar air heater having V-ribs with symmetrical gaps in a rectangular duct of solar air heater. International Journal Ambient Energy 38 (4):400–10. doi:10.1080/01430750.2015.1133455.
  • Maithani, R., and J. S. Saini. 2017b. Performance evaluation of solar air heater having V-ribs with symmetrical gaps in a rectangular duct of solar air heater. International Journal of Ambient Energy 38 (4):400–10. doi:10.1080/01430750.2015.1133455.
  • Maithani, R., S. Sharma, and A. Kumar. 2021. Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater. Renew Energy 179:84–95. doi:https://doi.org/10.1016/j.renene.2021.07.013.
  • Manjunath, M. S., K. V. Karanth, and N. Y. Sharma. 2018a Apr. Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences 138-139:219–28. doi: 10.1016/j.ijmecsci.2018.01.037.
  • Manjunath, M. S., K. V. Karanth, and N. Y. Sharma. 2018b. Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences 138-139 (January):219–28. doi:10.1016/j.ijmecsci.2018.01.037.
  • Matheswaran, M. M., T. V. Arjunan, and D. Somasundaram. 2018. Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Solar Energy 161 (October 2017):25–37. doi:10.1016/j.solener.2017.12.036.
  • Menasria, F., M. Zedairia, and A. Moummi. 2017. Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy 133:593–608. doi:10.1016/j.energy.2017.05.002.
  • Moradi, R., A. Kianifar, and S. Wongwises. 2017. Optimization of a solar air heater with phase change materials: Experimental and numerical study. Experimental Thermal & Fluid Science 89:41–49. doi:10.1016/j.expthermflusci.2017.07.011.
  • Nadda, R., A. Kumar, and R. Maithani. 2017a. Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles. Solar Energy 158 (September):117–31. doi:10.1016/j.solener.2017.09.042.
  • Nadda, R., A. Kumar, and R. Maithani. 2017b. Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles. Solar Energy 158 (October):117–31. doi:10.1016/j.solener.2017.09.042.
  • Nadda, R., R. Maithani, and A. Kumar. 2017a. Effect of multiple arc protrusion ribs on heat transfer and fluid flow of a circular-jet impingement solar air passage. Chemical Engineering & Processing - Process Intensification 120 (July):114–33. doi:10.1016/j.cep.2017.07.005.
  • Nadda, R., R. Maithani, and A. Kumar. 2017b. Effect of multiple arc protrusion ribs on heat transfer and fluid flow of a circular-jet impingement solar air passage. Chemical Engineering and Processing: Process Intensification 120:114–33. doi:10.1016/j.cep.2017.07.005.
  • Nandan, R., S. Sekhar, R. Kumar, T. Prasad, and A. K. Srivastava. 2017. Performance analysis of Double pass solar air heater with bottom extended surface. Energy Procedia 109 (November 2016):331–37. doi:10.1016/j.egypro.2017.03.077.
  • Nidhul, K., S. Kumar, A. K. Yadav, and S. Anish. 2020. Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis. Energy 200:117448. doi:10.1016/j.energy.2020.117448.
  • Nidhul, K., A. K. Yadav, S. Anish, and S. Kumar. 2021. Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration. Renewable and Sustainable Energy Reviews 142:110871. doi:10.1016/j.rser.2021.110871.
  • Olfian, H., A. Zabihi Sheshpoli, and S. S. Mousavi Ajarostaghi. 2020. Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transf - Asian Research 49 (3):1149–69. doi:10.1002/htj.21656.
  • Pandey, N. K., V. K. Bajpai, and V.K. Bajpai. 2016. Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Solar Energy 134:314–26. doi:10.1016/j.solener.2016.05.007.
  • Patel, Y. M., S. V. Jain, and V. J. Lakhera. 2020. Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs national advisory committee for aeronautics. Applied Thermal Engineering 170 (September 2019):114940. doi:10.1016/j.applthermaleng.2020.114940.
  • Pottler, K., C. M. Sippel, A. Beck, and J. Fricke. 1999 Jul. Optimized finned absorber geometries for solar air heating collectors. Solar Energy 67(1–3):35–52. doi: 10.1016/S0038-092X(00)00036-0.
  • Pottler, K., C. M. Sippel, A. Beck, and J. Fricke. 2017. Heat transfer and pressure drop correlations for offset strip fins usable for solar air heating collectors. (June 2017):1–9. https://www.researchgate.net/publication/236259561
  • Prado, R. T. A., and D. S. Sowmy. 2016. 7 - innovations in passive solar water heating systems. In Advances in solar heating and cooling, ed. R. Z. Wang and T. S. Ge, 117–50. Woodhead Publishing. doi:10.1016/B978-0-08-100301-5.00007-2
  • Prasad, K., and S. C. Mullick. 1983. Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy 13 (2):83–93. doi:10.1016/0306-2619(83)90001-6.
  • Prasad, B. N., and J. S. Saini. 1988. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy 41 (6):555–60. doi:https://doi.org/10.1016/0038-092X(88)90058-8.
  • Priyam, A., and P. Chand. 2018. Effect of wavelength and amplitude on the performance of wavy fi nned absorber solar air heater. Renew Energy 119:690–702. doi:10.1016/j.renene.2017.12.010.
  • Promvonge, P., S. Sripattanapipat, S. Tamna, S. Kwankaomeng, and C. Thianpong. 2010. Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles. International Communications in Heat and Mass Transfer 37 (2):170–77. doi:10.1016/j.icheatmasstransfer.2009.09.010.
  • Rajaseenivasan, T., S. R. Prasanth, M. S. Antony, and K. Srithar. 2017. Experimental investigation on the performance of an impinging jet solar air heater. Alexandria Engineering Research 56 (1):63–69. doi:10.1016/j.aej.2016.09.004.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019. A cost-e ff ective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering 146 (October 2018):910–20. doi:10.1016/j.applthermaleng.2018.10.055.
  • Ravi, R. K., and R. P. Saini. 2016. Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs. Energy 116:507–16. doi:10.1016/j.energy.2016.09.138.
  • Safari, A., R. Saidur, F. A. Sulaiman, Y. Xu, and J. Dong. 2017. A review on supercooling of phase change materials in thermal energy storage systems. Renewable and Sustainable Energy Reviews 70 (November):905–19. doi:10.1016/j.rser.2016.11.272.
  • Sahin, B., I. Ates, E. Manay, A. Bayrakceken, and C. Celik. 2019. Optimization of design parameters for heat transfer and friction factor in a heat sink with hollow trapezoidal baffles. Applied Thermal Engineering 154 (January):76–86. doi:10.1016/j.applthermaleng.2019.03.056.
  • Sahu, M. M., and J. L. Bhagoria. 2005. Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renew Energy 30 (13):2057–73. doi:10.1016/j.renene.2004.10.016.
  • Sahu, M. K., and R. K. Prasad. 2017. Thermohydraulic performance analysis of an arc shape wire roughened solar air heater. Renew Energy 108:598–614. doi:10.1016/j.renene.2017.02.075.
  • Saini, J. S., and J. S. Saini. 1996. Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. International Journal of Heat and Mass Transfer 40 (4):973–86. doi:10.1016/0017-9310(96)00019-1.
  • Saini, R. P. Ã., and J. Verma. 2008. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy 33 (8):1277–87. doi:10.1016/j.energy.2008.02.017.
  • Saravanakumar, P. T., D. Somasundaram, and M. M. Matheswaran. 2019. Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles. Solar Energy 180 (October 2018):360–71. doi:10.1016/j.solener.2019.01.036.
  • Saravanakumar, P. T., D. Somasundaram, and M. M. Matheswaran. 2020a. Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles. Applied Thermal Engineering 175 (March):115316. doi:10.1016/j.applthermaleng.2020.115316.
  • Saravanakumar, P. T., D. Somasundaram, and M. M. Matheswaran. 2020b. Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles. Applied Thermal Engineering 175 (April):115316. doi:10.1016/j.applthermaleng.2020.115316.
  • Sawhney, J. S., R. Maithani, and S. Chamoli. 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering 117:740–51. doi:10.1016/j.applthermaleng.2017.01.113.
  • Saxena, A., N. Agarwal, and E. Cuce. 2020. Thermal performance evaluation of a solar air heater integrated with helical tubes carrying phase change material. Journal of Energy Storage 30:101406. doi:10.1016/j.est.2020.101406.
  • Saxena, A., N. Agarwal, and G. Srivastava. 2013. Design and performance of a solar air heater with long term heat storage. International Journal of Heat and Mass Transfer 60:8–16. doi:10.1016/j.ijheatmasstransfer.2012.12.044.
  • Saxena, A., E. Cuce, S. D B, M. Sethi, P. M. Cuce, A. A. Sagade, and A. Kumar. 2023. Experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage. Materials Today 69:106282. doi:10.1016/j.jobe.2023.106282.
  • Saxena, A., E. Cuce, D. B. Singh, M. Sethi, P. M. Cuce, A. A. Sagade, and A. Kumar. 2023. Experimental studies of latent heat storage based solar air heater for space heating: A comparative analysis. Journal of Building Engineering 69:106282. doi:10.1016/j.jobe.2023.106282.
  • Saxena, A., A. A. El-Sebaii, and A. A. El-Sebaii. 2015. A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews 43:863–90. doi:10.1016/j.rser.2014.11.059.
  • Saxena, A., and V. Goel. 2013. Solar air heaters with thermal heat storages. Chinese Journal of Engineering 2013:1–11. doi:10.1155/2013/190279.
  • Saxena, A., G. Srivastava, and V. Tirth. 2015. Design and thermal performance evaluation of a novel solar air heater. Renewable Energy 77:501–11. doi:10.1016/j.renene.2014.12.041.
  • Saxena, A., E.-S. A. A. Varun, and A. A. El-Sebaii. 2015. A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews 43:863–90. doi:10.1016/j.rser.2014.11.059.
  • Saxena, A., P. Verma, G. Srivastava, and N. Kishore. 2020. Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Applied Thermal Engineering 167:114768. doi:10.1016/j.applthermaleng.2019.114768.
  • Sharma, A., G. Bharadwaj, and Varun. 2017. Heat transfer and friction factor correlation development for double-pass solar air heater having V-shaped ribs as roughness elements. Experimental Heat Transfer 30 (1):77–90. doi:10.1080/08916152.2016.1161676.
  • Sharma, S., R. K. Das, and K. Kulkarni. 2021a. Computational and experimental assessment of solar air heater roughened with six different baffles. Case Studies in Thermal Engineering 27:101350. doi:https://doi.org/10.1016/j.csite.2021.101350.
  • Sharma, S., R. K. Das, and K. Kulkarni. 2021b. Performance evaluation of solar air heater using Sine wave shape obstacle. Current Advances in Mechanical Engineering (pp. 541–53). Lecture Notes in Mechanical Engineering. Springer, Singapore. doi:10.1007/978-981-33-4795-3_49.
  • Sharma, S. K., and V. R. Kalamkar. 2017. Experimental and numerical investigation of forced convective heat transfer in solar air heater with thin ribs. Solar Energy 147:277–91. doi:10.1016/j.solener.2017.03.042.
  • Sharma, S., A. Kumar, and R. Maithani. 2021. Influence of twisted tape with collective protruded rib parameters of thermal–hydraulic performance of Al2O3-H2O nanofluid flow in heat exchanger tube. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.08.021.
  • Sharma, A., R. Pitchumani, and R. Chauhan. 2022. Solar air heating systems with latent heat storage - a review of state-of-the-art. Journal of Energy Storage 48:104013. doi:10.1016/j.est.2022.104013.
  • Singh, A. K., N. Agarwal, and A. Saxena. 2021. Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater. Journal of Energy Storage 39:102627. doi:10.1016/j.est.2021.102627.
  • Singh Bisht, V., A. Kumar Patil, and A. Gupta. 2018. Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews 81:954–77. doi:10.1016/j.rser.2017.08.036.
  • Singh, S., and P. Dhiman. 2016. Thermal performance of double pass packed bed solar air heaters – a comprehensive review. Renewable and Sustainable Energy Reviews 53:1010–31. doi:10.1016/j.rser.2015.09.058.
  • Singh, A. P., and Siddhartha. 2014. Effect of artificial roughness on heat transfer and friction characteristics having multiple arc shaped roughness element on the absorber plate. Solar Energy 105:479–93. doi:10.1016/j.solener.2014.04.007.
  • Singh, I., and S. Singh. 2018. CFD analysis of solar air heater duct having square wave pro fi led transverse ribs as roughness elements. Solar Energy 162 (July 2017):442–53. doi:10.1016/j.solener.2018.01.019.
  • Singh, I., S. Vardhan, S. Singh, and A. Singh. 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy 188 (February):519–32. doi:10.1016/j.solener.2019.06.022.
  • Sriromreun, P., C. Thianpong, and P. Promvonge. 2012. Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles ☆. International Communications in Heat and Mass Transfer 39 (7):945–52. doi:10.1016/j.icheatmasstransfer.2012.05.016.
  • Streicher, W. 2016. 2 - solar thermal technologies for domestic hot water preparation and space heating. In Renewable heating and cooling, ed. G. Stryi-Hipp, 9–39. Woodhead Publishing. doi:10.1016/B978-1-78242-213-6.00002-3
  • Summers, E. K., M. A. Antar, and J. H. Lienhard. 2012. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification–dehumidification desalination. Solar Energy 86 (11):3417–29. doi:10.1016/j.solener.2012.07.017.
  • Wang, D., J. Liu, Y. Liu, Y. Wang, B. Li, and J. Liu. 2020. Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap. Solar Energy 195 (13):89–101. doi:10.1016/j.solener.2019.11.034.
  • Webb, R. L., and E. R. G. Eckert. 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer 15 (9):1647–58. doi:10.1016/0017-9310(72)90095-6.
  • Yadav, A. S., and J. L. Bhagoria. 2014. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. International Journal of Heat and Mass Transfer 70:1016–39. doi:10.1016/j.ijheatmasstransfer.2013.11.074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.