58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis and optimization of liquid air power plant integrated with parabolic trough solar collectors

ORCID Icon, ORCID Icon, , , &
Pages 11943-11962 | Received 29 Jun 2023, Accepted 22 Sep 2023, Published online: 12 Oct 2023

References

  • Abed, N., and I. Afgan. 2020. An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors. International Journal of Energy Research 44 (7):5117–64. doi:10.1002/er.5271.
  • Ahmadi, A., D. H. Jamali, M. A. Ehyaei, and M. E. H. Assad. 2020. Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer. Journal of Cleaner Production 259:120915. doi:10.1016/j.jclepro.2020.120915.
  • An, B., J. Chen, Z. Deng, T. Zhang, J. Wang, L. Yang, and X. Chang. 2020. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage. Energy Conversion and Management 226:113520. doi:10.1016/j.enconman.2020.113520.
  • Ansarinasab, H., M. Fatimah, and Y. Khojasteh-Salkuyeh. 2023. Performance improvement of air liquefaction processes for liquid air energy storage (LAES) using magnetic refrigeration system. Journal of Energy Storage 65:107304. doi:10.1016/j.est.2023.107304.
  • Antonelli, M., S. Barsali, U. Desideri, R. Giglioli, F. Paganucci, and G. Pasini. 2017. Liquid air energy storage: Potential and challenges of hybrid power plants. Applied Energy 194:522–29. doi:10.1016/j.apenergy.2016.11.091.
  • Behar, O. 2018. Solar thermal power plants–A review of configurations and performance comparison. Renewable and Sustainable Energy Reviews 92:608–27. doi:10.1016/j.rser.2018.04.102.
  • Cetin, T. H., M. Kanoglu, and N. Yanikomer. 2019. Cryogenic energy storage powered by geothermal energy. Geothermics 77:34–40. doi:10.1016/j.geothermics.2018.08.005.
  • Derakhshan, S., and M. Khosravian. 2019. Exergy optimization of a novel combination of a liquid air energy storage system and a parabolic trough solar collector power plant. Journal of Energy Resources Technology 141 (8). doi:10.1115/1.4042415.
  • Ebrahimi, A., B. Ghorbani, H. Lohrasbi, and M. Ziabasharhagh. 2020. Novel integrated structure using solar parabolic dish collectors for liquid nitrogen production on offshore gas platforms (exergy and economic analysis). Sustainable Energy Technologies and Assessments 37:100606. doi:10.1016/j.seta.2019.100606.
  • Ebrahimi, A., B. Ghorbani, F. Skandarzadeh, and M. Ziabasharhagh. 2021. Introducing a novel liquid air cryogenic energy storage system using phase change material, solar parabolic trough collectors, and Kalina power cycle (process integration, pinch, and exergy analyses). Energy Conversion and Management 228:113653. doi:10.1016/j.enconman.2020.113653.
  • Gaul, H. W., and A. Rabl. 1979. Incidence angle modifier and average optical efficiency of parabolic trough collectors[R]. Golden, CO (United States): National Renewable Energy Lab.(NREL), Golden, CO (United States); Solar Energy Research Inst. (SERI).
  • Ghorbani, B., M. Mehrpooya, and A. Ardehali. 2020. Energy and exergy analysis of wind farm integrated with compressed air energy storage using multi-stage phase change material. Journal of Cleaner Production 259:120906. doi:10.1016/j.jclepro.2020.120906.
  • Ghorbani, B., M. Sadeghzadeh, M. H. Ahmadi, and M. Sharifpur. 2023. Exergy assessment and energy integration of a novel solar-driven liquid carbon dioxide and liquefied natural gas cogeneration system using liquid air cold energy recovery. Journal of Thermal Analysis and Calorimetry 148 (3):1025–46. doi:10.1007/s10973-022-11689-7.
  • Goel, A., R. Mahadeva, and G. Manik. 2023. Analysis and optimization of parabolic trough solar collector to improve its optical performance. Journal of Solar Energy Engineering 145 (3):031009. doi:10.1115/1.4055995.
  • Ji, W., Y. Zhou, Y. Sun, W. Zhang, C. Z. Pan, and J. J. Wang. 2017. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system[C]//IOP conference series: Materials science and Engineering. IOP Conference Series: Materials Science & Engineering 278 (1):012070. doi:10.1088/1757-899X/278/1/012070.
  • Kalogirou, S. A. 2012. A detailed thermal model of a parabolic trough collector receiver. Energy 48 (1):298–306. doi:10.1016/j.energy.2012.06.023.
  • Kalogirou, S. A. 2014. Solar energy engineering: Processes and systems. 2nd ed. Academic press. doi:10.1016/b978-0-12-374501-9.00014-5.
  • Kays, W. M., and A. L. London. 1984. Compact heat exchangers.
  • Mitali, J., S. Dhinakaran, and A. A. Mohamad. 2022. Energy storage systems: A review. Energy Storage and Saving 1 (3):166–216. doi:10.1016/j.enss.2022.07.002.
  • Navarro, M. E., A. Ahmad, Y. Luo, She X. 2019. Integrated cryogenic and thermal energy storage for decarbonizing energy consumption: Development and challenges. ES Energy & Environment. 4(2):1–4. doi:10.30919/esee8c300.
  • Piadehrouhi, F., B. Ghorbani, M. Miansari, and M. Mehrpooya. 2019. Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors. Energy 179:938–59. doi:10.1016/j.energy.2019.05.025.
  • Qi, M., J. Park, I. Lee, and I. Moon. 2022. Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective. Renewable and Sustainable Energy Reviews 159:112201. doi:10.1016/j.rser.2022.112201.
  • Razmi, A., M. Soltani, C. Aghanajafi, and M. Torabi. 2019. Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES). Energy Conversion and Management 187:262–73. doi:10.1016/j.enconman.2019.03.010.
  • Riaz, A., M. A. Qyyum, A. Naquash, and M. Lee. 2023. Self-recuperative liquid air energy storage system: A new sustainable approach for uninterrupted power supply. Applied Thermal Engineering 232:120983. doi:10.1016/j.applthermaleng.2023.120983.
  • Seyam, S., I. Dincer, and M. Agelin-Chaab. 2020. Development of a clean power plant integrated with a solar farm for a sustainable community. Energy Conversion and Management 225:113434. doi:10.1016/j.enconman.2020.113434.
  • She, X., T. Zhang, L. Cong, X. Peng, C. Li, Y. Luo, and Y. Ding. 2019. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement. Applied Energy 251:113355. doi:10.1016/j.apenergy.2019.113355.
  • Shyam, A., S. Iniyan, and R. Goic. 2021. Optical performance enhancement in a solar parabolic trough collector with optimized secondary optics. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 2021:1–18. doi:10.1080/15567036.2021.1939464.
  • Soltani, M., M. H. Nabat, A. R. Razmi, M. B. Dusseault, and J. Nathwani. 2020. A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system. Energy Conversion and Management 222:113203. doi:10.1016/j.enconman.2020.113203.
  • Toghyani, S., E. Baniasadi, and E. Afshari. 2016. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector. Energy Conversion and Management 121:93–104. doi:10.1016/j.enconman.2016.05.029.
  • Valenzuela, L., R. López-Martín, and E. Zarza. 2014. Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study. Energy 70:456–64. doi:10.1016/j.energy.2014.04.016.
  • Wang, Y., X. Ding, L. Tang, and Y. Weng. 2016. Effect of evaporation temperature on the performance of organic Rankine cycle in near-critical condition. Journal of Energy Resources Technology 138 (3):032001. doi:10.1115/1.4032238.
  • Wang, C., X. Zhang, Z. You, M. Zhang, S. Huang, and X. She. 2021. The effect of air purification on liquid air energy storage – an analysis from molecular to systematic modelling. Applied Energy 300:117349. doi:10.1016/j.apenergy.2021.117349.
  • Yang, S. 2022. Solar-driven liquid air power plant modeling, design space exploration, and multi-objective optimization. Energy 246:123324. doi:10.1016/j.energy.2022.123324.
  • Yang, M., L. Duan, Y. Tong, and Y. Jiang. 2022. Study on design optimization of new liquified air energy storage (LAES) system coupled with solar energy. Journal of Energy Storage 51:104365. doi:10.1016/j.est.2022.104365.
  • Yang, S., J. C. Ordonez, and J. V. C. Vargas. 2017. Constructal vapor compression refrigeration (VCR) systems design. International Journal of Heat and Mass Transfer 115:754–68. doi:10.1016/j.ijheatmasstransfer.2017.07.079.
  • Yang, S., T. S. Sensoy, and J. C. Ordonez. 2018. Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization. Applied Energy 217:509–26. doi:10.1016/j.apenergy.2018.02.099.
  • Yang, Y., L. Tong, Y. Liu, W. Guo, L. Wang, Y. Qiu, and Y. Ding. 2023. A novel integrated system of hydrogen liquefaction process and liquid air energy storage (LAES): Energy, exergy, and economic analysis. Energy Conversion and Management 280:116799. doi:10.1016/j.enconman.2023.116799.
  • Zhang, H., C. Wang, S. Wang. 2016. Calculation of the solar incidence angle for parabolic trough collectors. Journal of Solar Energy 37 (1):98–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.