115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysing the geographical impact on short-term solar irradiance forecasting using univariate and multivariate time series models

& ORCID Icon
Pages 11981-11999 | Received 13 Jan 2023, Accepted 03 Oct 2023, Published online: 17 Oct 2023

References

  • Aghaei, M., A. Eskandari, S. Vaezi, and S. S. Chopra. 2020. Solar PV power plants. In Photovoltaic solar energy conversion, 313–48. Elsevier. doi:10.1016/b978-0-12-819610-6.00010-7.
  • Akaike, H. 1974. A New look at the statistical model identification 215–22. doi: 10.1007/978-1-4612-1694-0_16.
  • Akarslan, E., F. O. Hocaoglu, and R. Edizkan. 2018. Novel short term solar irradiance forecasting models. Renewable Energy 123:58–66. doi:10.1016/j.renene.2018.02.048.
  • Alsharif, M. H., M. K. Younes, and J. Kim. 2019. Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry 11 (2):240. doi:10.3390/sym11020240.
  • Alves dos Santos, S. A., J. P. João, C. A. Carlos, and R. A. Marques Lameirinhas. 2021. The impact of aging of solar cells on the performance of photovoltaic panels. Energy Conversion and Management: X 10:10. doi:10.1016/j.ecmx.2021.100082.
  • ArunKumar, K. E., D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza. 2022. Comparative analysis of gated recurrent units (GRU), long short-term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal 61 (10):7585–603. doi:10.1016/j.aej.2022.01.011.
  • ArunKumar, K. E., D. V. Kalaga, C. M. Sai Kumar, G. Chilkoor, M. Kawaji, and T. M. Brenza. 2021. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving average (ARIMA) and seasonal Auto-Regressive Integrated Moving average (SARIMA). Applied Soft Computing 103. doi:10.1016/j.asoc.2021.107161.
  • Balikci, A., B. T. Azizoǧlu, E. Durbaba, and E. Akpinar (2017). Efficiency calculation of inverter for PV applications using MATLAB and SPICE. Proceedings - 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, 593–98. 10.1109/OPTIM.2017.7975033
  • Belmahdi, B., M. Louzazni, and A. E. Bouardi. 2020. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik 219:219. doi:10.1016/j.ijleo.2020.165207.
  • Belmahdi, B., M. Louzazni, and A. El Bouardi. 2022. Comparative optimization of global solar radiation forecasting using machine learning and time series models. Environmental Science and Pollution Research 29 (10):14871–88. doi:10.1007/s11356-021-16760-8.
  • Benmouiza, K., and A. Cheknane. 2015. Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models. Theoretical and Applied Climatology 124 (3):945–58. doi:10.1007/S00704-015-1469-Z.
  • Bouzerdoum, M., A. Mellit, and A. Massi Pavan. 2013. A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Solar Energy 98 (PC):226–35. doi:10.1016/j.solener.2013.10.002.
  • Box, G. E., J. G. M, R. G. C, and L. G. M. 2015. Time series analysis: Forecasting and control. New York: Wiley.
  • Dincer, F., and M. E. Meral. 2010. Critical factors that affecting efficiency of solar cells. Smart Grid and Renewable Energy 1 (01):47–50. doi:10.4236/sgre.2010.11007.
  • Ding, C., and H. Peng. 2005. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3 (2):185–205. doi:10.1142/S0219720005001004.
  • Drachal, K. 2021. Forecasting crude oil real prices with averaging time-varying VAR models. Resources Policy 74:102244. doi:10.1016/j.resourpol.2021.102244.
  • Enders, W. 2004. Applied time series econometrics, Eds. H. Lütkepohl & M. Krätzig. Cambridge University Press. doi:10.1017/CBO9780511606885.
  • Fouilloy, A., C. Voyant, G. Notton, F. Motte, C. Paoli, M. L. Nivet, E. Guillot, and J. L. Duchaud. 2018. Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. Energy 165:620–29. doi:10.1016/j.energy.2018.09.116.
  • Gellert, A., U. Fiore, A. Florea, R. Chis, and F. Palmieri. 2022. Forecasting electricity consumption and production in smart homes through statistical methods. Sustainable Cities and Society 76:76. doi:10.1016/j.scs.2021.103426.
  • Ghimire, S., B. Bhandari, D. Casillas-Pérez, R. C. Deo, and S. Salcedo-Sanz. 2022. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland, Australia. Engineering Applications of Artificial Intelligence 112:104860. doi:10.1016/j.engappai.2022.104860.
  • Ghimire, S., R. C. Deo, D. Casillas-Pérez, and S. Salcedo-Sanz. 2022. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Applied Energy 316:119063. doi:10.1016/j.apenergy.2022.119063.
  • Ghimire, S., R. C. Deo, H. Wang, M. S. Al-Musaylh, D. Casillas-Pérez, and S. Salcedo-Sanz. 2022. Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: A review and New modeling results. Energies 15 (3):1061. doi:10.3390/en15031061.
  • Ghimire, S., T. Nguyen-Huy, R. C. Deo, D. Casillas-Pérez, and S. Salcedo-Sanz. 2022. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustainable Materials and Technologies 32:e00429. doi:10.1016/j.susmat.2022.e00429.
  • Granger, C. W. J. 1969. Investigating causal relations by Econometric models and cross-spectral methods. Econometrica 37 (3):424–38. doi:10.2307/1912791.
  • Granger, C. W. J. 1980. Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control 2 (C):329–52. doi:10.1016/0165-1889(80)90069-X.
  • Hannah Ritchie, M. R., and P. Rosado. 2020. Energy. Our World in Data. Accessed may 26, 2022.
  • Harish, A., G. Giridhar, A. Ramanan, K. Balaraman, and P. K. Das. n.d. Formulation of performance of inverters for solar photovoltaic power plants-Indian case study.
  • Hosenuzzaman, M., N. A. Rahim, J. Selvaraj, and M. Hasanuzzaman. n.d. Factors affecting the pv based power generation.
  • Jaihuni, M., J. K. Basak, F. Khan, F. G. Okyere, E. Arulmozhi, A. Bhujel, J. Park, L. D. Hyun, and H. T. Kim. 2020. A partially amended hybrid bi-GRU—ARIMA model (PAHM) for predicting solar irradiance in short and very-short terms. Energies 13 (2):435. doi:10.3390/EN13020435.
  • Khan, W., S. Walker, and W. Zeiler. 2022. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 240:240. doi:10.1016/j.energy.2021.122812.
  • Konstantinou, M., S. Peratikou, and A. G. Charalambides. 2021. Solar photovoltaic forecasting of power output using lstm networks. Atmosphere 12 (1):1–17. doi:10.3390/atmos12010124.
  • Leamer, E. E. 1985. Vector autoregressions for causal inference? Carnegie-Rochester Conference Series on Public Policy 22 (C):283. doi:10.1016/0167-2231(85)90035-1.
  • Lütkepohl, H. 2010. Impulse response function. Macroeconometrics and Time Series Analysis 145–50. doi:10.1057/9780230280830_16.
  • Mohammadnia, A., A. Rezania, B. M. Ziapour, F. Sedaghati, and L. Rosendahl. 2020. Hybrid energy harvesting system to maximize power generation from solar energy. Energy Conversion and Management 205:205. doi:10.1016/j.enconman.2019.112352.
  • NSRDB. (n.d.). Accessed April 21, 2023. https://nsrdb.nrel.gov/data-viewer.
  • Olorunfemi, B. O., O. A. Ogbolumani, and N. Nwulu. 2022. Solar panels dirt monitoring and cleaning for performance improvement: A systematic review on smart systems. Sustainability (Switzerland) 14(17): MDPI. doi:10.3390/su141710920.
  • Power Sector of India. (n.d.). Accessed April 17, 2023. https://powermin.gov.in/en/content/power-sector-glance-all-india.
  • Qing, X., and Y. Niu. 2018. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 148:461–68. doi:10.1016/j.energy.2018.01.177.
  • Rai, A., A. Shrivastava, and K. C. Jana. 2022. A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting. Optik 252:252. doi:10.1016/j.ijleo.2021.168515.
  • Rathore, P. K. S., S. Rathore, R. Pratap Singh, and S. Agnihotri. 2018. Solar power utility sector in india: Challenges and opportunities. In Renewable and sustainable energy reviews, Vol. 81. 2703–13. Elsevier Ltd. doi:10.1016/j.rser.2017.06.077.
  • Rodrigues, S. D., R. M. Ueda, A. C. Barreto, R. R. Zanini, and A. M. Souza. 2021. How atmospheric pollutants impact the development of chronic obstructive pulmonary disease and lung cancer: A var-based model. Environmental Pollution 275:275. doi:10.1016/j.envpol.2021.116622.
  • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6 (2):6(2. doi:10.1214/aos/1176344136.
  • Shadab, A., S. Said, and S. Ahmad. 2019. Box–Jenkins multiplicative ARIMA modeling for prediction of solar radiation: A case study. International Journal of Energy and Water Resources 3 (4):305–18. doi:10.1007/s42108-019-00037-5.
  • Silva, M., J. J. Roberts, and P. O. Prado. 2021. Calculation of the shading factors for solar modules with matlab. Energies 14 (15):4713. doi:10.3390/en14154713.
  • Solar Power Generation Data | Kaggle. (n.d.). Accessed July 18, 2022. https://www.kaggle.com/datasets/anikannal/solar-power-generation-data.
  • Ssekulima, E. B., M. B. Anwar, A. Al Hinai, and M. S. El Moursi. 2016. Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review. IET Renewable Power Generation 10 (7):885–98. Institution of Engineering and Technology. doi:10.1049/iet-rpg.2015.0477.
  • Yu, Y., J. Cao, and J. Zhu. 2019. An LSTM short-term solar irradiance forecasting under complicated weather conditions. IEEE Access 7:145651–66. doi:10.1109/ACCESS.2019.2946057.
  • Zhang, C., K. Zhou, S. Yang, and Z. Shao. 2017. Exploring the transformation and upgrading of China’s economy using electricity consumption data: A VAR–VEC based model. Physica A: Statistical Mechanics and Its Applications 473:144–55. doi:10.1016/j.physa.2017.01.004.
  • Zhao, Z., R. Anand, and M. Wang 2019. Maximum Relevance and Minimum Redundancy Feature Selection Methods for a Marketing Machine Learning Platform. http://arxiv.org/abs/1908.05376
  • Zorrilla-Casanova, J., M. Piliougine, J. Carretero, P. Bernaola, P. Carpena, L. Mora-Lopez, and M. Sidrach-de-Cardona 2011. Analysis of dust losses in photovoltaic modules. Proceedings of the World Renewable Energy Congress –Sweden, 8–13 May, 2011, Linköping, Sweden, 57, 2985–92. 10.3384/ecp110572985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.