55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AP-1000 fuel assembly performance with cadmium oxide as a new burnable poison

ORCID Icon
Pages 11866-11880 | Published online: 09 Oct 2023

References

  • Abdelhameed, A. A. E., J. Lee, and Y. Kim. 2020. Physics conditions of passive autonomous frequency control operation in conventional large-size PWRs. Progress in Nuclear Energy 118:103072. doi:10.1016/j.pnucene.2019.103072.
  • Alam, S. B., B. Almutairi, T. Ridwan, D. Kumar, C. S. Goodwin, K. D. Atkinson, and G. T. Parks. 2019. Neutronic investigation of alternative & composite burnable poisons for the soluble-boron-free and long life civil marine small modular reactor cores. Scientific Reports 9 (1):1–14. doi:10.1038/s41598-019-55823-2.
  • Choe, J., H. C. Shin, and D. Lee. 2016. New burnable absorber for long-cycle low boron operation of PWRs. Annals of Nuclear Energy 88:272–79. doi:10.1016/j.anucene.2015.11.011.
  • Choi, H., M. Choi, and R. Hon. 2019. Benchmarking DRAGON/PARCS against KRITZ and FFTF measurements. Nuclear Technology 205 (3):486–505. doi:10.1080/00295450.2018.1495001.
  • Dunford, C. L., and R. R. Kinsey, 1998. NuDat system for access to nuclear data, International Atomic Energy Agency report, IAEA-NDS-205 (BNL-NCS-65687). International Atomic Energy Agency, Vienna, Austria.
  • Franceschini, F., and B. Petrovic. 2009. Fuel with advanced burnable absorbers design for the IRIS reactor core: Combined erbia and IFBA. Annals of Nuclear Energy 36 (8):1201–07. doi:10.1016/j.anucene.2009.04.005.
  • Galahom, A. A. 2016. Investigation of different burnable absorbers effects on the neutronic characteristics of PWR assembly. Annals of Nuclear Energy 94:22–31. doi:10.1016/j.anucene.2016.02.025.
  • Galahom, A. A. 2017. Study of the possibility of using europium and pyrex alloy as burnable absorber in PWR. Annals of Nuclear Energy 110:1127–33. doi:10.1016/j.anucene.2017.08.052.
  • Gicking, A. 2011. Neutron capture cross sections of cadmium isotopes. https://ir.library.oregonstate.edu/concern/undergraduate_thesis_or_projects/8910k068k
  • Khoshahval, F. 2021. AP1000 fuel assembly reactivity flattening using a novel candidate composite burnable absorber. The European Physical Journal Plus 136 (12):1–13. doi:10.1140/epjp/s13360-021-02214-0.
  • Khoshahval, F. 2022. The effect of enriched gadolinia and its concentrations on the neutronic parameters of AP-1000 fuel assembly. Radiation Physics and Chemistry 195:110086. doi:10.1016/j.radphyschem.2022.110086.
  • Khrais, R. A., G. V. Tikhomirov, I. S. Saldikov, and A. D. Smirnov. 2019, March. Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using monte-carlo code serpent. ( Conference Series IOP Publishing) Journal of Physics 1189 (1):012002. doi:10.1088/1742-6596/1189/1/012002.
  • Lide, D. R. 2009. CRC handbook of Chemistry and Physics. 90th. Boca Raton, FL: CRC Press.
  • Liu, S. C. J., and J. Cai. 2013. Neutronic and thermohydraulic characteristics of a new breeding thorium–uranium mixed SCWR fuel assembly. Annals of Nuclear Energy 62:429–36. doi:10.1016/j.anucene.2013.07.004.
  • Macfarlane, R., D. W. Muir, R. M. Boicourt, A. C. Kahler III, and J. L. Conlin. 2017. The NJOY nuclear data processing system, version 2016 (No. LA-UR-17-20093). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
  • Marleau, G., A. Hebert, and R. Roy, 2016. A user Guide for Dragon version 4. Technical Report IGE-294. École Polytechnique de Montréal.
  • Muir, D. W., R. M. Boicourt, and A. C. Kahler. 2012. The NJOY nuclear data processing system, version 2012. Los Alamos, USA: Los Alamos National Laboratory.
  • Naceur, A., and G. Marleau. 2018. Neutronic analysis for accident tolerant cladding candidates in CANDU-6 reactors. Annals of Nuclear Energy 113:147–61. doi:10.1016/j.anucene.2017.11.016.
  • NEA. 2006. Very high burn-ups in light water react. Nuclear Science ISBN 92-64-02303-8.
  • Nguyen, X. H., S. Jang, and Y. Kim. 2021. Truly-optimized PWR lattice for innovative soluble-boron-free small modular reactor. Scientific Reports 11 (1):1–15. doi:10.1038/s41598-021-92350-5.
  • Papi, Z., F. Khoshahval, and R. Pour-Imani. 2023. Advanced fuel and burnable absorbers designed for long-cycle operation of BNPP. Radiation Physics and Chemistry 206:110796. doi:10.1016/j.radphyschem.2023.110796.
  • Reda, S. M., S. S. Mustafa, and N. A. Elkhawas. 2020. Investigating the performance and safety features of pressurized water reactors using the burnable poisons. Annals of Nuclear Energy 141 (2020):107354. doi:10.1016/j.anucene.2020.107354.
  • Schulz, T. L. 2006. Westinghouse AP1000 advanced passive plant. Nuclear Engineering and Design 236 (14–16):1547–57. doi:10.1016/j.nucengdes.2006.03.049.
  • Secker, J. R., B. J. Johansen, D. L. Stucker, O. Ozer, K. Ivanov, S. Yilmaz, and E. H. Young. 2005. Optimum discharge burnup and cycle length for PWRs. Nuclear Technology 151 (2):109–19. doi:10.13182/NT05-A3636.
  • Sukarno, D. H. 2021, February. Neutronics analysis of PWR core using DRAGON, TRIVAC, and DONJON computer codes. ( IOP Publishing) Journal of Physics Conference Series 1772 (1):012016. doi:10.1088/1742-6596/1772/1/012016.
  • Tran, H. N., V. K. Hoang, P. H. Liem, and H. T. Hoang. 2019. Neutronics design of VVER-1000 fuel assembly with burnable poison particles. Nuclear Engineering & Technology 51 (2019):1729–37. doi:10.1016/j.net.2019.05.026.
  • Uguru, E. H., S. F. A. Sani, M. U. Khandaker, M. H. Rabir, and J. A. Karim. 2020. A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U,Th)O2 fuels. Nuclear Engineering & Technology 526. 2019.11.10 net 1099–109. doi:10.1016/j.net.2019.11.010.
  • Washington, J. A. 2016. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides. Colorado School of Mines.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.