72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and performance investigation of a triple blade dual stage Savonius-alike hydrokinetic turbine from low flow stream reserves

, , &
Pages 12099-12117 | Received 05 May 2023, Accepted 24 Aug 2023, Published online: 14 Oct 2023

References

  • Abbasi, K. R., J. Abbas, and M. Tufail. 2021. Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan. Energy Policy 149:112087. doi:10.1016/j.enpol.2020.112087.
  • Alizadeh, H., M. H. Jahangir, and R. Ghasempour. 2020. CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering 202:107178.
  • Badrul Salleh, M., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2019. Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustain Energy Technol Assessments 36 (July):100554. doi:10.1016/j.seta.2019.100554.
  • Bartl, J., F. Pierella, and L. Saetran. 2012. Wake measurements behind an array of two model wind turbines. Energy Procedia 24:305–12. doi:10.1016/j.egypro.2012.06.113.
  • Basumatary, M., A. Biswas, and R. D. Misra. 2021. Experimental verification of improved performance of Savonius turbine with a combined lift and drag-based blade profile for ultra-low head river application. Sustainable Energy Technologies and Assessments 44:100999. doi:10.1016/j.seta.2021.100999.
  • Bazooyar, B., and H. G. Darabkhani. 2020. Design, manufacture, and test of a micro-turbine renewable energy combustor. Energy Conversion and Management 213:112782.
  • Chemengich, S. J., S. Z. Kassab, and E. R. Lotfy. 2022. Effect of the variations of the clearance flow guides geometry on the Savonius wind turbine performance: 2D and 3D studies. Journal of Wind Engineering and Industrial Aerodynamics 222:104920. doi:10.1016/j.jweia.2022.104920.
  • Contreras, S. L. L. T., and O. López. 2019. A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines. Journal of the Brazilian Society of Mechanical Sciences and Engineering 6:1–24.
  • Frikha, S., Z. Driss, E. Ayadi, Z. Masmoudi, and M. S. Abid. 2016. Numerical and experimental characterization of multi-stage Savonius rotors. Energy 114:382–404. doi:10.1016/j.energy.2016.08.017.
  • Ghosh, A., A. Biswas, K. K. Sharma, and R. Gupta. 2015. Computational analysis of flow physics of a combined three-bladed darrieus Savonius wind rotor. Journal of the Energy Institute 88 (4):425–37. doi:10.1016/j.joei.2014.11.001.
  • Ibrahim, M. M., Mostafa, N. H., Osman, A. H., and Hesham, A. 2020. Performance analysis of a stand-alone hybrid energy system for desalination unit in Egypt. Energy Conversion and Management 215:112941.
  • KAlexander, A. J., and B. P. Holownia. 1978. Wind tunnel tests on a savonius rotor. Journal of Wind Engineering & Industrial Aerodynamics 3 (4):343–51. doi:10.1016/0167-6105(78)90037-5.
  • Khan, Z. U., Z. Ali, and E. Uddin. 2022. Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile. Renewable Energy 188:801–18. doi:10.1016/j.renene.2022.02.050.
  • Khan, M., N. Islam, T. Iqbal, M. Hinchey, and V. Masek. 2009. Performance of Savonius rotor as a water current turbine. The Journal of Ocean Technology 4 (2):71–83.
  • Kirke, B. K. 2011. Tests on ducted and bare helical and straight blade darrieus hydrokinetic turbines. Renewable Energy 36 (11):3013–22. doi:10.1016/j.renene.2011.03.036.
  • Korprasertsak, N., and T. Leephakpreeda. 2016. Analysis and optimal design of wind boosters for vertical axis wind turbines at low wind speed. Journal of Wind Engineering and Industrial Aerodynamics 159:9–18. doi:10.1016/j.jweia.2016.10.007.
  • Mauro, S., Brusca, S., Lanzafame, R., and Messina, M. 2019. CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance. Renewable Energy 141:28–39.
  • Modi, V. J., N. J. Roth, and F. MSUK. 1984. Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system. J Wind EngInd Aerodyn 16 (1):85–96. doi:10.1016/0167-6105(84)90050-3.
  • Mohammadi, M., Mohammadi, R., Ramadan, A., and Mohamed, M. H. 2018. Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy 158:592–606.
  • Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., and Tucciarelli, T. 2020. Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy 162:1087–103.
  • Mosbahi, M., Elgasri, S., Lajnef, M., Mosbahi, B., and Driss, Z. 2021. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy 18 (1):51–65.
  • Munson, B. R., D. F. Young, T. H. Okiishi, and W. W. Huebsch. 2011. Fundamentals of fluidmechanics. 6th ed. John Wiley & Sons, Inc.
  • Nimvari, M. E., H. Fatahian, and E. Fatahian. 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management 220:113062. doi:10.1016/j.enconman.2020.113062.
  • Noel, H., J. C. Stephens, and S. A. Malin. 2019. Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains. Social Science 48:219–34. doi:10.1016/j.erss.2018.09.016.
  • Perez, A., and J. J. Garcia-Rendon. 2021. Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy 167:146–61. doi:10.1016/j.renene.2020.11.067.
  • Quaranta, E., Bonjean, M., Cuvato, D., Nicolet, C., Dreyer, M., Gaspoz, A., Rey-Mermet, S., Boulicaut, B., Pratalata, L., Pinelli, M., et al. 2020. Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability 12 (21):8873.
  • Quaranta, E., and P. Davies. 2021. Emerging and innovative materials for hydropower Engineering applications: Turbines, bearings, sealing, dams and waterways, and Ocean power. Engineering 8:148–58.
  • Ridgill, M., Neill, S. P., Lewis, M. J., Robins, P. E., and Patil, S. D. 2021. Global riverine theoretical hydrokinetic resource assessment. Renewable Energy 174:654–65.
  • Saha, U. K., and M. J. Rajkumar. 2006. On the performance analysis of Savonius turbine with twisted blades. Renewable Energy 31 (11):1776–88. doi:10.1016/j.renene.2005.08.030.
  • Sahebzadeh, S., A. Rezaeiha, and H. Montazeri. 2020. Towards optimal layout design of vertical-axis wind-turbine farms: Double rotor arrangements. Energy Conversion and Management 226:113527.
  • Salleh, M., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2020. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management 226:113584.
  • Salleh, M., Kamaruddin, N. M., Mohamed-Kassim, Z., and Bakar, E. A. 2021. Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates. Ocean Engineering 228:108950.
  • Sari, M., Badruzzaman, M., Cherchi, C., Swindle, M., Ajami, N., and Jacangelo, J. G. 2018. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. Journal of Environmental Management 228:416–28.
  • Sarma, K. C., A. Biswas, and R. D. Misra. 2022. Experimental investigation of a two-bladed double-stage Savonius-akin hydrokinetic turbine at low flow velocity conditions. Renewable Energy 187:958–73. doi:10.1016/j.renene.2022.02.011.
  • Shahsavari, A., and M. Akbari. 2018. Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews 90:275–91.
  • Shamsuddin, M. S. M., and N. M. Kamaruddin. 2023. Experimental study on the characterization of the self-starting capability of a single and double-stage Savonius turbine. Results in Engineering 17:100854. doi:10.1016/j.rineng.2022.100854.
  • Shamsuddin, M. S. M., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2022. The influence of material on the power performance of Savonius turbines in wind and water applications. Ocean Engineering 266:112638. doi:10.1016/j.oceaneng.2022.112638.
  • Shashikumar, C. M., Honnasiddaiah, R., Hindasageri, V., and Madav, V. 2021. Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation flumes with different bed slopes. Renewable Energy 163:845–57.
  • Shashikumar, C. M., H. Vijaykumar, and M. Vasudeva. 2021. Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation flume. Sustainable Energy Technologies and Assessments 43:100871.
  • Sinsel, S. R., R. L. Riemke, and V. H. Hoffmann. 2020. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 145:2271–85.
  • Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. D., Khan, M. W. A., and Ikram, M. 2019. An integrated delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 7 (2):118.
  • Tahani, M., A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini. 2017. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy 130:327–38. doi:10.1016/j.energy.2017.04.125.
  • Thiyagaraj, J., I. Rahamathullah, G. Anbuchezhiyan, R. Barathiraja, and A. Ponshanmugakumar. 2021. Influence of blade numbers, overlap ratio, and modified blades on performance characteristics of the Savonius hydro-kinetic turbine. Materials Today: Proceedings 46:4047–53. doi:10.1016/j.matpr.2021.02.568.
  • Tiwari, G., Kumar, J., Prasad, V., and Patel, V. K. 2020. Utility of CFD in the design and performance analysis of hydraulic turbines—A review. Energy Reports 6:2410–29.
  • 2013. Turbulence intensity. http://www.cfd-online.com/Wiki/Turbulenceintensity.
  • Vermaak, H. J., K. Kusakana, and S. P. Koko. 2014. Status of micro-hydrokinetic river technology in ruralapplications: A review of literature. Renewable and Sustainable Energy Reviews 29:625–33. doi:10.1016/j.rser.2013.08.066.
  • Wang, Q., M. Su, R. Li, and P. Ponce. 2019. The effects of energy prices, urbanization, and economic growth on energy consumption per capita in 186 countries. Journal of Cleaner Production 225:1017–32. doi:10.1016/j.jclepro.2019.04.008.
  • Wua, H., L. Chen, M. Yu, W. Li, and B. Chen. 2012. On design and performance prediction of the horizontal-axis hydrokinetic turbine. Ocean Engineering 50:23–30. doi:10.1016/j.oceaneng.2012.04.003.
  • Yosry, A. G., A. Fernández-Jiménez, E. Álvarez-Álvarez, and E. Blanco Marigorta. 2021. “Design and characterization of a vertical-axis micro tidal turbine for low-velocity scenarios. Energy Conversion and Management 237:114144. doi:10.1016/j.enconman.2021.114144.
  • Zhang, Y., C. Kang, H. Zhao, and H. B. Kim. 2021. Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor. Ocean Engineering 238:109760. doi:10.1016/j.oceaneng.2021.109760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.