71
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on thermal performance enhancement in multi V-Pattern convex protrusion roughened solar air heater

Pages 12118-12133 | Received 17 May 2023, Accepted 22 Sep 2023, Published online: 17 Oct 2023

References

  • ASHRAE standard 93-97, methods of testing to determine the thermal performance of solar collectors, 1997.
  • Bhagoria, J. L., J. S. Saini, and S. C. Solanki. 2012. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renewable Energy 25 (3):341–69. doi:10.1016/S0960-1481(01)00057-X.
  • Bhushan, B., and R. Singh. 2011. Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Solar Energy 85 (5):1109–18. doi:10.1016/j.solener.2011.03.007.
  • Bhushan, B., and R. Singh. 2012. Thermal and thermohydraulic performance of roughened solar air heater having protruded absorber plate. Solar Energy 86 (11):3388–96. doi:10.1016/j.solener.2012.09.004.
  • Bisht, V. S., A. K. Patil, and A. Gupta. 2018. Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews 81:954–77. doi:10.1016/j.rser.2017.08.036.
  • Chaudhri, K., J. L. Bhagoria, and V. Kumar. January 2022. Transverse wedge-shaped rib roughened solar air heater (SAH) - exergy based experimental investigation. Renewable Energy 184:1150–64. doi: 10.1016/j.renene.2021.12.005.
  • Chhaparwal, G. K., A. Srivastava, and R. Dayal. 2019. Artificial repeated-rib roughness in a solar air heater-A review. Solar Energy 194:329–59. doi:10.1016/j.solener.2019.10.011.
  • Das, S., A. Biswas, and B. Das. 2023. Parametric investigation on the thermo-hydraulic performance of a novel solar air heater design with conical protruded nozzle jet impingement. Applied Thermal Engineering 219:119583. doi:10.1016/j.applthermaleng.2022.119583.
  • Gill, R. S., V. S. Hans, and R. P. Singh. 2021. Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Applied Thermal Engineering 191:116871. doi:10.1016/j.applthermaleng.2021.116871.
  • Gupta, D., S. C. Solanki, and J. S. Saini. 1993. Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Solar Energy 51:31–37. doi:10.1016/0038-092X(93)90039-Q.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2010. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Solar Energy 84 (6):898–911. doi:10.1016/j.solener.2010.02.004.
  • Heidari, N., and J. M. Pearce. 2016. A Review of Greenhouse gas emission Liabilities as the value of Renewable Energy for mitigating lawsuits for climate change related damages. Renewable and Sustainable Energy Reviews 55C:899–908. doi:10.1016/j.rser.2015.11.025.
  • Kline, S. J., and F. A. Mcclintock. 1953. Describing uncertainties in single sample experiments. Mech Engg 75:3–8.
  • Kumar, A., R. Kumar, R. Maithani, R. Chauhan, M. Sethi, A. Kumari, S. Kumar, and S. Kumar. 2017. Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage. Renewable Energy 109:461–79. doi:10.1016/j.renene.2017.03.030.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2013. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi-V-shaped with gap rib as artificial roughness. Renewable Energy 58:151–63. doi:10.1016/j.renene.2013.03.013.
  • Kumar, R., A. Sharma, V. Goel, R. Sharma, M. Sethi, and V. V. Tyagi. July 2023. An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater. Renewable Energy 211:964–74. doi: 10.1016/j.renene.2023.04.111.
  • Kumar, S., and S. K. Verma. February 2022. Heat transfer and fluid flow analysis of sinusoidal protrusion rib in solar air heater. International Journal of Thermal Sciences 172:107323. doi: 10.1016/j.ijthermalsci.2021.107323.
  • Kumar, V. 2019a. Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater. Renewable Energy 135:355–77. doi:10.1016/j.renene.2018.12.002.
  • Kumar, V. Thermal and thermohydraulic performance analysis of three sides artificially roughened solar collector. Solar Energy. 190:212–27. 15 September 2019b. doi:10.1016/j.solener.2019.08.018.
  • Kumar, V., and R. Murmu. April 2023. Performance based investigation of inclined spherical ball roughened solar air heater. Applied Thermal Engineering 224:120033. doi: 10.1016/j.applthermaleng.2023.120033.
  • Kumar, V., and L. Prasad. August 2019. Thermal performance investigation of three sides concave dimple roughened solar air heaters. Solar Energy 188:361–79. doi: 10.1016/j.solener.2019.06.008.
  • Lanjewar, A. M., J. L. Bhagoria, and M. K. Agrawal. 2015. Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness. Renewable and Sustainable Energy Reviews 43:1214–23. doi:10.1016/j.rser.2014.11.081.
  • Lee, D. H., D. H. Rhee, K. M. Kim, H. H. Cho, and H. K. Moon. 2009. Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel. Energy 34 (11):1770–78. doi:10.1016/j.energy.2009.07.011.
  • Mathew, A. A., and V. Thangavel. A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis. Solar Energy. 220:828–42. 15 May 2021. doi:10.1016/j.solener.2021.03.057.
  • Momin, A. M. E., J. S. Saini, and S. C. Solanki. 2002. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer 45 (16):3383–96. doi:10.1016/S0017-9310(02)00046-7.
  • Perwez, A., and R. Kumar. Thermal performance investigation of the flat and spherical dimple absorber plate solar air heaters. Solar Energy. 193:309–23. 15 November 2019. doi:10.1016/j.solener.2019.09.066.
  • Saini, R. P., and J. Verma. 2008. Heat transfer and friction factor correlations for a duct having dimple shape artificial roughness for solar air heaters. Energy 33 (8):1277–87. doi:10.1016/j.energy.2008.02.017.
  • Sethi, M., V. Varun, and N. S. Thakur. 2012. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Solar Energy 86 (9):2852–61. doi:10.1016/j.solener.2012.06.024.
  • Shaik, R., E. Punna, and S. K. Gugulothu. Optimization of thermohydraulic performance of triangular duct solar air heater with alternative dimple shaped protrusion and intrusion on the absorber plate. Thermal Science and Engineering Progress. 42:101957. 1 July 2023. doi:10.1016/j.tsep.2023.101957.
  • Sharma, S., R. Singh, and B. Bhushan. 2021. CFD based thermal efficiency of square shape protruded roughened absorber plate for solar air heater, Energy sources, part A: Recovery, utilization, and environmental effects. Taylor & Francis.
  • Singh, A., S. Sinha, A. K. Choudhary, D. Sharma, H. Panchal, and S. K. K. 2021. An experimental investigation of emission performance of heterogeneous catalyst Jatropha biodiesel using RSM. Case Studies in Thermal Engineering 2021:25, 100876. doi:10.1016/j.csite.2021.100876.
  • Singh, D., and V. Kumar. Thermal performance investigation of frustum roughened solar air heater. Solar Energy. 255:339–54. 1 May 2023. doi:10.1016/j.solener.2023.03.036.
  • Singh, I., S. Vardhan, S. Singh, and A. Singh. 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy 188:519–32. doi:10.1016/j.solener.2019.06.022.
  • Singh, V. P., S. Jain, A. Karn, G. Dwivedi, A. Kumar, S. Mishra, N. K. Sharma, M. Bajaj, H. M. Zawbaa, S. Kamel, et al. 2022. Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs. Case Studies in Thermal Engineering 39:102461. November. doi:10.1016/j.csite.2022.102461.
  • Yadav, S., M. Kaushal, 2014. Exergetic performance evaluation of solar air heater having arc shape-oriented protrusions as roughness element. Solar Energy 105:181–89. doi: 10.1016/j.solener.2014.04.001.
  • Yadav, S., M. Kaushal, S. Varun, . 2013. Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Experimental Thermal Fluid Science. 44:34–41. doi:10.1016/j.expthermflusci.2012.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.