121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of waste tire pyrolysis oil and gasoline as low reactivity fuel in RCCI engine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12243-12262 | Published online: 26 Oct 2023

References

  • Agarwal, A. K., A. P. Singh, A. García, and J. Monsalve-Serrano. 2022. Challenges and opportunities for application of reactivity-controlled compression ignition combustion in commercially viable transport engines. Progress in Energy and Combustion Science 93:101028. doi:10.1016/j.pecs.2022.101028.
  • Altun, Ş., M. Fırat, M. Okcu, and Y. Varol. 2021. A study of oxygen-enriched reactivity-controlled compression ignition combustion in a diesel research engine under varying loadings and premixed ratios. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 1–21. doi:10.1080/15567036.2021.2020380.
  • Altun, Ş., and J. Rodríguez‐Fernández. 2016. Biofuels derived from Turkish industry wastes-a study of performance and emissions in a diesel engine. Environmental Progress & Sustainable Energy 35 (3):847–52. doi:10.1002/ep.12227.
  • Azad, A. K., A. T. Doppalapudi, M. M. K. Khan, N. M. S. Hassan, and P. Gudimetla. 2023. A landscape review on biodiesel combustion strategies to reduce emission. Energy Reports 9:4413–36. doi:10.1016/j.egyr.2023.03.104.
  • Baskar, P., and A. Senthilkumar. 2016. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine. Engineering Science and Technology, an International Journal 19 (1):438–43. doi:10.1016/j.jestch.2015.08.011.
  • Cacua, K., A. Amell, and F. Cadavid. 2012. Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass and Bioenergy 45:159–67. doi:10.1016/j.biombioe.2012.06.003.
  • Chaitanya, A. K., and D. K. Mohanty. 2022. Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR. Energy 256:124574. doi:10.1016/j.energy.2022.124574.
  • Chen, H., X. Su, F. Sun, J. He, Z. Chen, P. Zhang, and H. Xu. 2022. Investigation on combustion and emission characteristics of a CRDI engine fueled with diesel cyclopentanol blends and verification through on-road real-time test. Fuel Processing Technology 234:107321. doi:10.1016/j.fuproc.2022.107321.
  • De Poures, M. V., D. Dillikannan, G. Kaliyaperumal, S. Thanikodi, Ü. Ağbulut, A. T. Hoang, Z. Mahmoud, S. Shaik, C. A. Saleel, and A. Afzal. 2023. Collective influence and optimization of 1-hexanol, fuel injection timing, and EGR to control toxic emissions from a light-duty agricultural diesel engine fueled with diesel/waste cooking oil methyl ester blends. Process Safety and Environmental Protection 172:738–52. doi:10.1016/j.psep.2023.02.054.
  • Ekoto, I. W., W. F. Colban, P. C. Miles, S. Park, D. E. Foster, and R. D. Reitz. 2009. Sources of UHC emissions from a light-duty diesel engine operating in a partially premixed combustion regime. SAE International Journal of Engines 2 (1):1265–89. doi:10.4271/2009-01-1446.
  • Faisal, F., M. G. Rasul, M. I. Jahirul, and A. A. Chowdhury. 2023. Waste plastics pyrolytic oil is a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment 886:163756. doi:10.1016/j.scitotenv.2023.163756.
  • Fırat, M., Ş. Altun, M. Okcu, and Y. Varol. 2022a. Comparison of ethanol/diesel fuel dual direct injection (DI2) strategy with reactivity controlled compression ignition (RCCI) in a diesel research engine. Energy 255:124556. doi:10.1016/j.energy.2022.124556.
  • Fırat, M., Ş. Altun, M. Okcu, and Y. Varol. 2022b. Experimental investigation on combustion and emission characteristics of reactivity controlled compression ignition engine powered with iso-propanol/biodiesel blends. Propulsion & Power Research 11 (2):224–39. doi:10.1016/j.jppr.2022.04.003.
  • Fırat, M., N. Coşkun, M. Okcu, and Y. Varol. 2019. Numerical investigation of regeneration process of diesel particulate filter (DPF) made of different constitutive materials. Journal of the Faculty of Engineering and Architecture of Gazi University 34 (1):297–308.
  • Gumus, M., C. Sayin, and M. Canakci. 2012. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel 95:486–94. doi:10.1016/j.fuel.2011.11.020.
  • Hoang, A. T., P. Murugesan, P. V. Elumalai, D. Balasubramanian, S. Parida, C. P. Jayabal, M. Nachippan, M. A. Kalam, T. H. Truong, D. N. Cao, et al. 2023. Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model. Energy 280:128233. doi:10.1016/j.energy.2023.128233.
  • Hürdoğan, E., C. Ozalp, O. Kara, and M. Ozcanli. 2017. Experimental investigation on performance and emission characteristics of waste tire pyrolysis oil–diesel blends in a diesel engine. International Journal of Hydrogen Energy 42 (36):23373–78. doi:10.1016/j.ijhydene.2016.12.126.
  • Janarthanan, K., and P. Sivanandi. 2022. Extraction and characterization of waste plastic pyrolysis oil for diesel engines. Journal of Cleaner Production 366:132924. doi:10.1016/j.jclepro.2022.132924.
  • Karagöz, M., Ü. Ağbulut, and S. Sarıdemir. 2020. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines. Fuel 275:117844. doi:10.1016/j.fuel.2020.117844.
  • Krishnamoorthi, M., R. Malayalamurthi, Z. He, and S. Kandasamy. 2019. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews 116:109404. doi:10.1016/j.rser.2019.109404.
  • Kumaravel, S. T., A. Murugesan, and A. Kumaravel. 2016. Tyre pyrolysis oil as an alternative fuel for diesel engines–A review. Renewable and Sustainable Energy Reviews 60:1678–85. doi:10.1016/j.rser.2016.03.035.
  • Kumar, S., J. H. Cho, J. Park, and I. Moon. 2013a. Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable and Sustainable Energy Reviews 22:46–72. doi:10.1016/j.rser.2013.01.017.
  • Kumar, S., R. Prakash, S. Murugan, and R. K. Singh. 2013b. Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Conversion and Management 74:323–31. doi:10.1016/j.enconman.2013.05.028.
  • Liu, L., G. Cai, J. Zhang, X. Liu, and K. Liu. 2020. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews 126:109831. doi:10.1016/j.rser.2020.109831.
  • Liu, J., X. Zhang, C. Tang, L. Wang, P. Sun, and P. Wang. 2023. Effects of palm oil biodiesel addition on exhaust emissions and particle physicochemical characteristics of a common-rail diesel engine. Fuel Processing Technology 241:107606. doi:10.1016/j.fuproc.2022.107606.
  • Lü, X. C., W. Chen, and Z. Huang. 2005. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion. Fuel 84 (9):1074–83. doi:10.1016/j.fuel.2004.12.014.
  • Lü, X. C., J. G. Yang, W. G. Zhang, and Z. Huang. 2005. Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy & Fuels 19 (5):1879–88. doi:10.1021/ef0500179.
  • Maurya, R. K., and M. R. Saxena. 2018. Characterization of ringing intensity in a hydrogen-fueled HCCI engine. International Journal of Hydrogen Energy 43 (19):9423–37. doi:10.1016/j.ijhydene.2018.03.194.
  • Ma, Q., Q. Zhang, J. Liang, and C. Yang. 2021. The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Reports 7:1016–24. doi:10.1016/j.egyr.2021.02.027.
  • Ma, S., Z. Zheng, H. Liu, Q. Zhang, and M. Yao. 2013. Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy 109:202–12. doi:10.1016/j.apenergy.2013.04.012.
  • Meher, L. C., D. V. Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification-a review. Renewable and Sustainable Energy Reviews 10 (3):248–68. doi:10.1016/j.rser.2004.09.002.
  • Mohammed, A. S., S. M. Atnaw, A. V. Ramaya, and G. Alemayehu. 2023. A comprehensive review on the effect of ethers, antioxidants, and cetane improver additives on biodiesel-diesel blend in CI engine performance and emission characteristics. Journal of the Energy Institute 108:101227. doi:10.1016/j.joei.2023.101227.
  • Mohan, R. K., J. Sarojini, U. Rajak, T. N. Verma, and Ü. Ağbulut. 2023. Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis. Energy 265:126140. doi:10.1016/j.energy.2022.126140.
  • Nadanakumar, V., S. J. Muthiya, T. Prudhvi, S. Induja, R. Sathyamurthy, and V. Dharmaraj 2021. Experimental investigation to control HC, CO & NOx emissions from diesel engines using diesel oxidation catalyst. Materials Today: Proceedings, 43, 434–40.
  • Okcu, M., Y. Varol, Ş. Altun, and M. Fırat. 2021. Effects of isopropanol-butanol-ethanol (IBE) on combustion characteristics of a RCCI engine fueled by biodiesel fuel. Sustainable Energy Technologies and Assessments 47:101443. doi:10.1016/j.seta.2021.101443.
  • Ozdemir, Z. O., and H. Mutlubas. 2016. Biodiesel production methods and environmental effects. Kirklareli University Journal of Engineering and Science 2 (2):129–43.
  • Ozsezen, A. N., M. Canakci, A. Turkcan, and C. Sayin. 2009. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 88 (4):629–36. doi:10.1016/j.fuel.2008.09.023.
  • Özer, S., U. Demir, and S. Koçyiğit. 2023. Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions. Energy 266:126412. doi:10.1016/j.energy.2022.126412.
  • Park, S. H., and S. H. Yoon. 2016. Effect of dual-fuel combustion strategies on combustion and emission characteristics in reactivity controlled compression ignition (RCCI) engine. Fuel 181:310–18. doi:10.1016/j.fuel.2016.04.118.
  • Pote, R. N., and R. K. Patil. 2019. Combustion and emission characteristics analysis of waste tyre pyrolysis oil. SN Applied Sciences 1 (4):1–17. doi:10.1007/s42452-019-0308-8.
  • Rodríguez-Fernández, J., A. Tsolakis, R. F. Cracknell, and R. H. Clark. 2009. Combining GTL fuel, reformed EGR and HC-SCR aftertreatment system to reduce diesel NOx emissions. A statistical approach. International Journal of Hydrogen Energy 34 (6):2789–99. doi:10.1016/j.ijhydene.2009.01.026.
  • Sharon, H., P. J. S. Ram, K. J. Fernando, S. Murali, and R. Muthusamy. 2013. Fueling a stationary direct injection diesel engine with diesel-used palm oil–butanol blends–an experimental study. Energy Conversion and Management 73:95–105. doi:10.1016/j.enconman.2013.04.027.
  • Singh, T. S., U. Rajak, A. Dasore, M. Muthukumar, and T. N. Verma. 2021. Performance and ecological parameters of a diesel engine fueled with diesel and plastic pyrolyzed oil (PPO) at variable working parameters. Environmental Technology & Innovation 22:101491. doi:10.1016/j.eti.2021.101491.
  • Song, R., J. Liu, L. Wang, and S. Liu. 2008. Performance and emissions of a diesel engine fuelled with methanol. Energy & Fuels 22 (6):3883–88. doi:10.1021/ef800492r.
  • Song, J., V. Zello, A. L. Boehman, and F. J. Waller. 2004. Comparison of the impact of intake oxygen enrichment and fuel oxygenation on diesel combustion and emissions. Energy & Fuels 18 (5):1282–90. doi:10.1021/ef034103p.
  • Thomas, B. S., and R. C. Gupta. 2016. A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews 54:1323–33. doi:10.1016/j.rser.2015.10.092.
  • Verma, T. N., P. Nashine, P. K. Chaurasiya, U. Rajak, A. Afzal, S. Kumar, D. V. Singh, and A. K. Azad. 2020. The effect of ethanol-methanol-diesel-microalgae blends on performance, combustion and emissions of a direct injection diesel engine. Sustainable Energy Technologies and Assessments 42:100851. doi:10.1016/j.seta.2020.100851.
  • Wang, L., J. Liu, Q. Ji, P. Sun, J. Li, M. Wei, and S. Liu. 2022. Experimental study on the high load extension of PODE/methanol RCCI combustion mode with optimized injection strategy. Fuel 314:122726. doi:10.1016/j.fuel.2021.122726.
  • Wang, W., F. Li, and H. Wang. 2023. Numerical simulation study on the effect of different oxygen-enrichment atmospheres on diesel combustion. Energy 266:126474. doi:10.1016/j.energy.2022.126474.
  • Yaqoob, H., Y. H. Teoh, M. A. Jamil, and M. Gulzar. 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute 96:205–21. doi:10.1016/j.joei.2021.03.002.
  • Yıldız, M., and B. A. Çeper. 2022. A comparative study on gasoline/diesel-fueled RCCI combustion at different premixed ratios and high-EGR diesel CI combustion in an IC engine under low load conditions. Fuel 324:124596. doi:10.1016/j.fuel.2022.124596.
  • Yin, X., W. Li, H. Duan, Q. Duan, H. Kou, Y. Wang, B. Yang, and K. Zeng. 2023. A comparative study on operating range and combustion characteristics of methanol/diesel dual direct injection engine with different methanol injection timings. Fuel 334:126646. doi:10.1016/j.fuel.2022.126646.
  • Zhang, Z., J. Li, J. Tian, R. Dong, Z. Zou, S. Gao, and D. Tan. 2022. Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ethanol/n-butanol blends. Energy 249:123733. doi:10.1016/j.energy.2022.123733.
  • Zheng, Y., F. Li, H. Zhang, S. Wang, Z. Zhao, W. Wang, and R. Chen. 2023. Fishhook characteristics of biodiesel lubricity during autoxidation. Fuel 331:125897. doi:10.1016/j.fuel.2022.125897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.