83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced frequency stabilization in a restructured power system leveraging Demand response strategy for source and Load Intermittency

ORCID Icon &
Pages 12474-12492 | Received 08 Mar 2023, Accepted 10 Oct 2023, Published online: 05 Nov 2023

References

  • Arya, Y. 2020. Effect of electric vehicles on load frequency control in interconnected thermal and hydrothermal power systems utilising cf-foidf controller. IET Gener Transm Distrib 14 (14):2666–75. doi:10.1049/iet-gtd.2019.1217.
  • Arya, Y. 2021. ICA assisted FTIλDN controller for AGC performance enrichment of interconnected reheat thermal power systems. Journal of Ambient Intelligence and Humanized Computing 14 (3):1919–35. (0123456789). doi:10.1007/s12652-021-03403-6.
  • Babu, N. R., and L. C. Saikia. 2019. Automatic generation control of a solar thermal and dish-stirling solar thermal system integrated multi-area system incorporating accurate HVDC link model using crow search algorithm optimised FOPI minus FODF controller. IET Renew Power Gener 13 (12):2221–31. doi:10.1049/iet-rpg.2018.6089.
  • Barik, A. K., and D. C. Das. 2019. Proficient load-frequency regulation of demand response supported bio-renewable cogeneration based hybrid microgrids with quasi-oppositional selfish-herd optimisation. IET Gener Transm Distrib 13 (13):2889–98. doi:10.1049/iet-gtd.2019.0166.
  • Bhagat, S. K., and L. C. Saikia. 2023. Application of inertia emulation control strategy with energy storage system in multi-area hydro -thermal system using a novel metaheuristic optimized tilt controller. Electric Power Systems Research 222 (June):109522. doi:10.1016/j.epsr.2023.109522.
  • Bharti, K., V. P. Singh, and S. P. Singh. 2022. Impact of intelligent demand response for load frequency control in smart grid perspective. IETE Journal of Research 68 (4):2433–44. doi:10.1080/03772063.2019.1709570.
  • Choudhary, R., J. N. Rai, and Y. Arya. 2023. FOPTID + 1 controller with capacitive energy storage for AGC performance enrichment of multi-source electric power systems. Electric Power Systems Research 221 (April):109450. doi:10.1016/j.epsr.2023.109450.
  • Gulzar, M. M. 2023. Designing of robust frequency stabilization using optimized MPC-(1+PIDN) controller for high order interconnected renewable energy based power systems. Protection and Control of Modern Power Systems 8 (1). doi:10.1186/s41601-023-00286-x.
  • Gulzar, M. M., M. Iqbal, S. Shahzad, H. Abdul Muqeet, Muqeet, HA, Shahzad M, Hussain, MM. 2022. Load frequency control (LFC) strategies in renewable energy‐based hybrid power systems: A review. Energies. 15(10):1–23. doi:10.3390/en15103488.
  • Gulzar, M. M., S. Murawwat, D. Sibtain, K. Shahid, I. Javed, and Y. Gui. 2022. Modified cascaded controller design constructed on fractional Operator ‘β’ to mitigate frequency fluctuations for sustainable operation of power systems. Energies 15 (20):7814. doi:10.3390/en15207814.
  • Gulzar, M. M., D. Sibtain, A. Ahmad, Javed I, Murawwat S, Rasool I, Hayat A. 2022. An efficient design of adaptive model predictive controller for load frequency control in hybrid power system. International Transactions on Electrical Energy Systems 2022:1–14. doi:10.1155/2022/7894264.
  • Gulzar, M. M., D. Sibtain, M. Khalid, and Y. Arya. 2023. Cascaded fractional model predictive controller for load frequency control in Multiarea hybrid renewable energy system with uncertainties. International Journal of Energy Research 2023:1–25. doi:10.1155/2023/5999997.
  • Heidari, A. A., S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen. 2019. Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–72. doi:10.1016/j.future.2019.02.028.
  • Hosseini, S. A., M. Toulabi, A. Ashouri-Zadeh, and A. M. Ranjbar. 2022. Battery energy storage systems and demand response applied to power system frequency control. Int J Electr Power Energy Syst 136 (September 2021):107680. doi:10.1016/j.ijepes.2021.107680.
  • Iqbal, M., and M. Majid Gulzar. 2022. Master-Slave design for frequency regulation in hybrid power system under complex environment. IET Renewable Power Generation 16 (14):3041–57. doi:10.1049/rpg2.12553.
  • Kennedy, J., and R. Eberhart. 1995. 47-particle Swarm optimization proceedings., IEEE International Conferenc. Proc ICNN’95 - Int Conf Neural Networks 11 (1):111–17.
  • Kumar, V., V. Sharma, Y. Arya, R. Naresh, and A. Singh. 2022. Stochastic wind energy Integrated multi source power system control via a novel model Predictive controller based on Harris Hawks optimization. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (4):10694–719. doi:10.1080/15567036.2022.2156637.
  • Latif, A., S. M. S. Hussain, D. C. Das, and T. S. Ustun. 2021. Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system. Applied Energy 282 (PA):116171. doi:10.1016/j.apenergy.2020.116171.
  • Lin, C., B. Hu, C. Shao, W. Li, C. Li, and K. Xie. 2022. Delay-dependent Optimal load frequency control for sampling systems with demand response. IEEE Transactions on Power Systems 37 (6):4310–24. doi:10.1109/TPWRS.2022.3154429.
  • Mahdavi, S., S. Rahnamayan, and K. Deb. 2018. Opposition based learning: A literature review. Swarm and Evolutionary Computation 39 (November 2016):1–23. doi:10.1016/j.swevo.2017.09.010.
  • Mirjalili, S. 2015. The ant lion optimizer. Advances in Engineering Software 83:80–98. doi:10.1016/j.advengsoft.2015.01.010.
  • Mirjalili, S., A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili. 2017. Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software 114:163–91. doi:10.1016/j.advengsoft.2017.07.002.
  • Mirjalili, S., and A. Lewis. 2016. The whale optimization algorithm. Adv Eng Soft 95:51–67. doi:10.1016/j.advengsoft.2016.01.008.
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey Wolf Optimizer. Advances in Engineering Software 69:46–61. doi:10.1016/j.advengsoft.2013.12.007.
  • Morsali, J. 2022. Fractional order control strategy for superconducting magnetic energy storage to take part effectually in automatic generation control issue of a realistic restructured power system. Journal of Energy Storage 55 (PD):105764. doi:10.1016/j.est.2022.105764.
  • Pourmousavi, S. A., S. Member, M. H. Nehrir, and L. Fellow. 2014. Introducing dynamic demand response in the LFC model. IEEE Transactions on Power Systems 29 (4):1562–72. doi:10.1109/TPWRS.2013.2296696.
  • Rao, R. V., V. J. Savsani, and D. P. Vakharia. 2011. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. CAD Comput Aided Des 43 (3):303–15. Published online 2011. doi:10.1016/j.cad.2010.12.015.
  • Sahoo, G., R. K. Sahu, S. Panda, N. R. Samal, and Y. Arya. 2023. Modified Harris Hawks optimization-based fractional-order fuzzy PID controller for frequency regulation of multi-Micro-grid. Arabian Journal for Science and Engineering 48 (11):14381–405. doi:10.1007/s13369-023-07613-2.
  • Saxena, A., and R. Shankar. 2022. Improved load frequency control considering dynamic demand regulated power system integrating renewable sources and hybrid energy storage system. Sustain Energy Technol Assessments 52 (PC):102245. doi:10.1016/j.seta.2022.102245.
  • Sharma, M., S. Dhundhara, Y. Arya, and S. Prakash. 2021. Frequency stabilization in deregulated energy system using coordinated operation of fuzzy controller and redox flow battery. International Journal of Energy Research 45 (5):7457–75. doi:10.1002/er.6328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.