64
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Innovative magnetic catalyst facilitates biodiesel production via transesterification of sunflower and waste cooking oils

, , ORCID Icon, &
Pages 12277-12294 | Received 21 Jul 2023, Accepted 08 Oct 2023, Published online: 02 Nov 2023

References

  • Adewale, P., M. Dumont, and M. Ngadi. 2015. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45:574–88. doi:10.1016/j.rser.2015.02.039.
  • Agilent. Determination of total FAME linolenic acid methyl esters in biodiesel according to EN-14103. 2011. [Accessed 2023 Sep 23]. Available online at: https://www.agilent.com/cs/library/applications/5990-8983EN.pdf
  • Akhlaghian, F., and M. Moradi. 2020. Adsorption of chromium (VI) from polluted water using core/shell nano magnetic particles of Fe3O4/CoO. Journal of Water and Wastewater 31:77–87. doi:10.22093/wwj.2019.172923.2833.
  • Alaei, S., M. Haghighi, J. Toghiani, and B. R. Vahid. 2018. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Industrial Crops & Products 117:322–32. doi:10.1016/j.indcrop.2018.03.015.
  • Ali, M. A., I. A. Al-Hydary, and T. A. Al-Hattab. 2017. Nano-magnetic catalyst CaO-Fe3O4 for biodiesel production from date palm seed oil. Bulletin of Chemical Reaction Engineering & Catalysis 12:460–68. doi:10.9767/bcrec.12.3.923.460-468.
  • Bayat, A., M. Baghdadi, and G. Nabi Bidhendi. 2018. Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: Optimization of biodiesel production using response surface methodology. Energy Conversion and Management 177:395–405. doi:10.1016/j.enconman.2018.09.086.
  • Bokov, D., A. Turki Jalil, S. Chupradit, W. Suksatan, M. J. Ansari, I. H. Shewael, G. H. Valiev, E. Kianfar, and Z. Wang. 2021. Nanomaterial by Sol-Gel Method: Synthesis and application. Advances in Materials Science and Engineering 2021:1–21. doi:10.1155/2021/5102014.
  • Celante, D., J. V. D. Schenkel, and F. de Castilhos. 2018. Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel 212:101–07. doi:10.1016/j.fuel.2017.10.040.
  • Cui, X., L. Dong, S. Zhong, C. Shi, Y. Sun, and P. Chen. 2017. Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Journal of chemical engineering 326:839–48. doi:10.1016/j.cej.2017.06.045.
  • Dantas, J., E. Leal, A. B. Mapossa, D. R. Cornejo, and A. C. F. 2017. Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 191:463–71. doi:10.1016/j.fuel.2016.11.107.
  • Degfie, T. A., T. T. Mamo, and Y. S. Mekonnen. 2019. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nanocatalyst. Scientific Reports 9:18982. doi:10.1038/s41598-019-55403-4.
  • Deng, Y., J. Li, T. Qian, W. Guan, and X. Wang. 2017. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage. Journal of Materials Science and Technology 33:198–203. doi:10.1016/j.jmst.2016.02.011.
  • Energy Information Administration 2023. In 2023, US renewable diesel production capacity surpassed. [Accesses 2023 Sep 23] Available online at: https://www.eia.gov/todayinenergy/detail.php?id=60281#:~:text=In%20January%202023%2C%20U.S.%20production,capacity%20for%20the%20first%20time.
  • Ferrusca, M. C., R. Romero, S. L. Martínez, A. Ramírez-Serrano, and R. Natividad. 2023. Biodiesel production from waste cooking oil: A perspective on catalytic processes. Processes 11:1952. doi:10.3390/pr11071952.
  • Gardy, J. A. O., O. Céspedes, X. Hassanpour, A. Lai, A. F. Lee, M. Wilson, K. Rehan, and M. Rehan. 2018. A magnetically separable SO4/Fe-al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 234:268–78. doi:10.1016/j.apcatb.2018.04.046.
  • Ghavami, K., F. Akhlaghian, and F. Rahmani. 2022. Potassium compounds-Al2O3 catalyst synthesized by using the sol-gel urea combustion method for transesterification of sunflower and waste cooking oils. Biomass Conversion and Biorefinery 12:1139–52. doi:10.1007/s13399-020-00731-z.
  • Ghavami, K., F. Rahmani, and F. Akhlaghian. 2020. Production of green fuel biodiesel from sunflower oil using K2O nanoparticles sonochemically immobilized over bentonite. Fuel and Combustion 13:89–101. in persian.
  • Gonçalves, M. A., E. K. L. Mares, J. R. Zamian, G. N. da Rocha Filho, and L. R. V. da Conceição. 2021. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel 304:121463. doi:10.1016/j.fuel.2021.121463.
  • Gonzaga, V. E., R. Romero, R. M. Gómez-Espinosa, A. Romero, S. L. Martínez, and R. Natividad. 2021. Biodiesel production from waste cooking oil catalyzed by a bifunctional catalyst. ACS Omega 6 (37):24092–105. doi:10.1021/acsomega.1c03586.
  • Gul, I., S. M. Khan, U. Nawaz, Z. U. Haq, A. Z. Abdullah, and M. Iqbal. 2022. Techniques used in the process of biodiesel production and its merits and demerits from a historical perspective. In Zero waste biorefinery, Springer. 10.1007/978-981-16-8682-5_19
  • Hasheminezhad, A. S. J. H., and R. Tabatabaie. 2018. Evaluation of operative factors on conversion efficiency of biodiesel production from waste cooking oil. Iranica Journal of Energy & Environment 9:100–04.
  • Ibrahim, N. A., U. Rashid, B. Hazmi, B. R. Moser, F. A. Alharthi, S. L. Rokhum, and C. Ngamcharussrivichai. 2022. Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel 317:123525. doi:10.1016/j.fuel.2022.123525.
  • International Energy Agency. 2021. Renewables 2021 analysis and forecast to 2026. [Accessed 2023 Sep 23]. Available online at: https://iea.blob.core.windows.net/assets/5ae32253-7409-4f9a-a91d-1493ffb9777a/Renewables2021-Analysisandforecastto2026.pdf.
  • Jan, H. A., N. U. Saqib, A. Khusro, M. U. K. Sahibzada, M. Rauf, S. Alghamdi, M. Almehmadi, M. U. Khandaker, T. B. Emran, and H. Mohafez. 2022. Synthesis of biodiesel from carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst. Journal of King Saud University – Science 34 (8):102317. doi:10.1016/j.jksus.2022.102317.
  • Javidparvar, A., B. Ramezanzadeh, and E. Ghasemi. 2016. The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. Journal of the Taiwan Institute of Chemical Engineers 61:356–66. doi:10.1016/j.jtice.2016.01.001.
  • Kedir, W. M., K. T. Wondimu, and G. S. Weldegrum. 2023. Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell. Heliyon 9:e16475. doi:10.1016/j.heliyon.2023.e16475.
  • Khakestarian, M., M. Taghizadeh, and N. Fallah. 2022. Magnetic mesoporous KOH/Fe3O4@MCM-41 nanocatalyst for biodiesel production from waste cooking oil: Optimization of process variables and kinetics study. Environmental Progress & Sustainable Energy 41:e13863. doi:10.1002/ep.13863.
  • Khanna, L., and N. K. Verma. 2014. Synthesis, characterization and biocompatibility of potassium ferritenanoparticles. Journal of Materials Science and Technology 30:30–36. doi:10.1016/j.jmst.2013.10.008.
  • Leofanti, G., M. Padovan, G. Tozzola, and B. Venturelli. 1998. Surface area and pore texture of catalysts. Catalysis Today 41:207–19. doi:10.1016/s0920-5861(98)00050-9.
  • Lin, C.-Y., and L. Ma. 2020. Influences of water content in feedstock oil on burning characteristics of fatty acid methyl esters. Processes 8:1130. doi:10.3390/pr8091130.
  • Liu, Y., P. Zhang, M. Fan, and P. Jiang. 2016. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel 164:314–21. doi:10.1016/j.fuel.2015.10.008.
  • Li, T.-F., X.-Q. Wang, J. Jiao, J.-Z. Liu, H.-X. Zhang, L.-L. Niu, C.-J. Zhao, C.-B. Gu, T. Efferth, and Y.-J. Fu. 2018. Catalytic transesterification of Pistacia chinensis seed oil using HPW immobilized on magnetic composite graphene oxide/cellulose microspheres. Renewable Energy 127:1017–25. doi:10.1016/j.renene.2018.05.030.
  • Maheshwari, P., M. B. Haider, M. Yusuf, J. J. Klemeš, A. Bokhari, M. Beg, A. Al-Othman, R. Kumar, and A. K. Jaiswal. 2022. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production 355:131588. doi:10.1016/j.jclepro.2022.131588.
  • Mandari, V., and S. K. Devarai. 2022. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Research 15 (2):935–61. doi:10.1007/s12155-021-10333-w.
  • Marghussian, V. 2015. Magnetic properties of nano-glass ceramics. Nano-Glass Ceramics, Elsevier. doi:10.1016/B978-0-323-35386-1.00004-9.
  • Moatamed Sabzevar, A., M. Ghahramaninezhad, and M. Niknam Shahrak. 2021. Enhanced biodiesel production from oleic acid using TiO2-decorated magnetic ZIF-8 nanocomposite catalyst and its utilization for used frying oil conversion to valuable product. Fuel 288:119586. doi:10.1016/j.fuel.2020.119586.
  • Modan, E. M., and A. G. Plăiașu. 2020. Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. The Annals of “DUNAREA DE JOS” University of Galati Fascicle IX: Metallurgy and Materials Science 43 (1):53–60. doi:10.35219/mms.2020.1.08.
  • Mohamad, M., N. Ngadi, S. L. Wong, M. Jusoh, and N. Y. Yahya. 2017. Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel 190:104–12. doi:10.1016/j.fuel.2016.10.123.
  • Monika, S. B., V. V. Pathak, and V. V. Pathak. 2023. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus 10:100209. doi:10.1016/j.nexus.2023.100209.
  • Ong, H. C., Y. W. Tiong, B. H. H. Goh, Y. Y. Gan, M. Mofijur, I. M. Rizwanul Fattah, C. T. Chong, M. Asraful Alam, H. V. Lee, A. S. Silitonga, et al. 2021. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Conversion and Management 228:113647. doi:10.1016/j.enconman.2020.113647.
  • Precedence Research. 2023. Biodiesel market size 2023 to 2032. [Accessed 2023 Sep 23] Available on line at: https://www.precedenceresearch.com/biodiesel-market.
  • Rajendiran, N., and B. Gurunatha. 2020. Optimization and techno-economic analysis of biodiesel production from calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology 315:123852. doi:10.1016/j.biortech.2020.123852.
  • Saetiao, P., N. Kongrit, J. Jitjamnong, C. Direksilp, C. K. Cheng, and N. Khantikulanon. 2023. Enhancing sustainable production of fatty acid methyl ester from palm oil using bio-based heterogeneous catalyst: Process simulation and techno-economic analysis. ACS Omega 8 (33):30598–611. doi:10.1021/acsomega.3c04209.
  • Sebayang, A. H., F. Ideris, A. S. Silitonga, A. H. Shamsuddin, M. F. M. A. Zamri, M. A. Pulungan, S. Siahaan, M. Alfansury, F. Kusumo, and J. Milano. 2023. Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; a potential Oleaginous tropical seed oil for biodiesel production. Renewable Energy 211:434–44. doi:10.1016/j.renene.2023.04.099.
  • Sebayang, A. H., F. Kusumo, J. Milano, A. H. Shamsuddin, A. S. Silitonga, F. Ideris, J. Siswantoro, I. Veza, M. Mofijur, and S. R. Chia. 2023. Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel 346:128404. doi:10.1016/j.fuel.2023.128404.
  • Singh, D., D. Sharma, S. L. Soni, S. Sharma, P. K. Sharma, and A. Jhalani. 2020. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553. doi:10.1016/j.fuel.2019.116553.
  • Singh, N., V. Singh, and M. P. Singh. 2021. Recent updates of biodiesel production: Source, production methods, and metagenomic approach. In Bioenergy research: Revisiting latest development, clean energy production technologies, M. Srivastava, N. Srivastava, and R. Singh, Eds. Singapore: Springer. 10.1007/978-981-33-4615-4_5
  • Statista. 2023. Global biofuel production by countries 2022. [Accessed 2023 Sep 23]. Available on line at: https://www.statista.com/statistics/274168/biofuel-production-in-leading-countries-in-oil-equivalent/.
  • Suzihaque, M. U. H., H. Alwi, U. K. Ibrahim, S. Abdullah, and N. Haron. 2022. Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings 63:S490–S95. doi:10.1016/j.matpr.2022.04.527.
  • Torkzaban, S., M. Feyzi, and L. Norouzi. 2022. A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil. Renewable Energy 200:996–1007. doi:10.1016/j.renene.2022.09.077.
  • Ulakpa, W. C., R. O. E. Ulakpa, E. O. Eyankware, and M. C. Egwunyenga. 2022. Statistical optimization of biodiesel synthesis from waste cooking oil using NaOH/bentonite impregnated catalyst. Cleaner Waste Systems 3:100049. doi:10.1016/j.clwas.2022.100049.
  • Ullah, K., H. A. Jan, M. Ahmad, and A. Ullah. 2020. Synthesis and structural characterization of biofuel from non-edible cocklebur sp., using ZnO particle; a novel energy crop for bioenergy industry. Frontiers in Bioengineering and Biotechnology 8:756. doi:10.3389/fbioe.2020.00756.
  • Yusmaniar, W. A. A., Y. Taryana, R. Muzaki, and R. Muzaki. 2016. Synthesis and characterization of composite UPR/Fe3O4 for its use as electromagnetic wave absorber. IOP Conference Series: Materials Science & Engineering 196:012033. doi:10.1088/1757-899X/196/1/012033.
  • Zhang, P., Q. Han, M. Fan, and P. Jiang. 2014. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance. Applied Surface Science 317:1125–30. doi:10.1016/j.apsusc.2014.09.043.
  • Zikri, A., P. L. S. Erlinawati, M. Agus, S. Fathona, and S. Fathona. 2020. Biodiesel production from Bintaro (cerbera manghas L) seeds with potassium hydroxide as catalyst. Journal of Physics: Conference Series 1500 (1):012084. doi:10.1088/1742-6596/1500/1/012084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.