55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on wettability model of coal particles based on composition

, , , , &
Pages 12493-12502 | Received 27 Feb 2023, Accepted 10 Jun 2023, Published online: 05 Nov 2023

References

  • Cheng, G., Y. Li, Y. Cao, and Z. Zhang. 2023. A novel method for the desulfurization of medium–high sulfur coking coal. Fuel 335:126988. doi:10.1016/j.fuel.2022.126988.
  • Cheng, G., M. Zhang, Y. Zhang, B. Lin, H. Zhan, and H. Zhang. 2022. A novel renewable collector from waste fried oil and its application in coal combustion residuals decarbonization. Fuel 323:124388. doi:10.1016/j.fuel.2022.124388.
  • Chen, X. L., Yan, G. C., Xu, G., Yang, X. L., Li, J. L., and Bai, X. Y., 2022. Influence of the Branched Structure of Polyoxyethylene Units in Nonionic Surfactants on the Wettability of Anthracite: A Combined Modeling and Experimental Study. Adsorption Science & Technology, 1–11. doi:10.1155/2022/4249949.
  • Ibrahim, A. F. 2022. Application of various machine learning techniques in predicting coal wettability for CO2 sequestration purpose. International Journal of Coal Geology 252:103951. doi:10.1016/j.coal.2022.103951.
  • Kirchberg, S., Y. Abdin, and G. Ziegmann. 2011. Influence of particle shape and size on the wetting behavior of soft magnetic micropowders. Powder Technology 207 (1–3):311–17. doi:10.1016/j.powtec.2010.11.012.
  • Kowalczuk, P. B., and J. Drzymala. 2012. Surface flotation of particles on liquids. Principles and applications. Colloids and Surfaces A-Physicochemical and Engineering Aspects 393:81–85. doi:10.1016/j.colsurfa.2011.11.004.
  • Liao, X., B. Wang, L. Wang, J. Zhu, P. Chu, Z. Zhu, and S. Zheng. 2021. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust Control. ACS Omega 6 (34):21925–38. doi:10.1021/acsomega.1c02205.
  • Li, H. L., J. Chen, C. L. Peng, F. F. Min, and S. X. Song. 2020. Salt coagulation or flocculation? In situ zeta potential study on ion correlation and slime coating with the presence of clay: A case of coal slurry aggregation. Environmental Research 189:109875. doi:10.1016/j.envres.2020.109875.
  • Li, Z. L., F. Rao, M. A. Corona-Arroyo, A. Bedolla-Jacuinde, and S. X. Song. 2019. Comminution effect on surface roughness and flotation behavior of malachite particles. Minerals Engineering 132:1–7. doi:10.1016/j.mineng.2018.11.056.
  • Meng, J. Q., L. J. Wang, S. Zhang, Y. P. Lyu, and J. K. Xia. 2021. Effect of anionic/nonionic surfactants on the wettability of coal surface. Chemical Physics Letters 785:139130. doi:10.1016/j.cplett.2021.139130.
  • Ni, C., X. N. Bu, W. C. Xia, Y. L. Peng, H. S. Yu, and G. Y. Xie. 2018. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technology 339:434–39. doi:10.1016/j.powtec.2018.08.034.
  • Peng, W. J., S. G. Liu, Y. J. Cao, W. Wang, S. Lv, and Y. K. Huang. 2022. A novel approach for selective flotation separation of chalcopyrite and molybdenite - electrocatalytic oxidation pretreatment and its mechanism. Applied Surface Science 597:153753. doi:10.1016/j.apsusc.2022.153753.
  • Sun, W. J., H. S. Han, W. Sun, and R. L. Wang. 2022. New insights into the role of calcium dioleate in selectively separating fluorite from calcite during cleaning process. Colloids and Surfaces A-Physicochemical and Engineering Aspects 648:129245. doi:10.1016/j.colsurfa.2022.129245.
  • Sun, X., L. Zhang, Z. Xie, B. Li, and S. Liu. 2021. Improvement of low‐rank coal flotation based on the Enhancement of wettability difference between organic matter and gangue. Journal of Surfactants and Detergents 24 (2):269–79. doi:10.1002/jsde.12482.
  • Tan, J. L., H. Z. Cheng, L. B. Wei, X. H. Gui, and Y. W. Xing. 2020. Investigation of CTAB and DBP esters on low-rank coal flotation selectivity. Energy Sources Part A-Recovery Utilization and Environmental Effects 42 (10):1225–34. doi:10.1080/15567036.2019.1602231.
  • Wang, P., H. Han, R. Liu, Y. Li, and X. Tan. 2020. Effects of metamorphic degree of coal on coal dust wettability and dust-suppression efficiency via spraying. Advances in Materials Science and Engineering 2020:1–16. doi:10.1155/2020/4854391.
  • Wang, Y. H., N. Sun, H. R. Chu, X. Y. Zheng, D. F. Lu, and H. T. Zheng. 2021. Surface dissolution behavior and its influences on the flotation separation of spodumene from silicates. Separation Science and Technology 56 (8):1407–17. doi:10.1080/01496395.2020.1768120.
  • Wang, X., S. Yuan, and B. Jiang. 2019. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Advanced Powder Technology 30 (8):1696–708. doi:10.1016/j.apt.2019.05.021.
  • Xia, Y. C., Y. W. Xing, X. H. Gui, and Y. J. Cao. 2022. Interaction between hydrocarbon oil and hydrophilic mineral surfaces: A chemical force microscopy and molecular dynamics simulation study. Fuel 323:124402. doi:10.1016/j.fuel.2022.124402.
  • Xie, W., G. Cao, X. Ren, and Y. Li. 2014. Effect of flotation promoter on the rate of coal slime flotation. Journal of Mining Science 50 (3):601–07. doi:10.1134/S1062739114030211.
  • Xi, P., R. X. Ma, and W. L. Liu. 2020. Research on the hydrophilicity of non-coal kaolinite and coal kaolinite from the viewpoint of experiments and DFT simulations. Symmetry-Basel 12 (7):1199. doi:10.3390/sym12071199.
  • Xing, Y. W., Y. F. Zhang, M. Liu, M. D. Xu, F. Y. Guo, H. S. Han, Z. Y. Gao, Y. Y. Cao, and X. H. Gui. 2019. Improving the floatability of coal with varying surface roughness through hypobaric treatment. Powder Technology 345:643–48. doi:10.1016/j.powtec.2019.01.058.
  • Xu, G. Q., X. N. Bu, Y. Q. Mao, C. Ni, Y. L. Peng, and G. Y. Xie. 2020. Combined column and cell flotation process for improving clean coal quality: Laboratory-scale and industry-scale studies. Energy Sources Part A-Recovery Utilization and Environmental Effects 42 (21):2678–87. doi:10.1080/15567036.2019.1618981.
  • Zhen, K., H. Zhang, and C. Zheng. 2019. Wettability modification and flotation intensification of low-rank coal with dodecyltrimethylammonium chloride addition. Journal of Thermal Analysis and Calorimetry 137 (6):2007–16. doi:10.1007/s10973-019-08131-w.
  • Zhou, Q., G. Xu, Y. Chen, B. Qin, Z. Zhao, and C. Guo. 2020. The development of an optimized evaluation system for improving coal dust suppression efficiency using aqueous solution sprays. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602:125104. doi:10.1016/j.colsurfa.2020.125104.
  • Zou, W., Y. Cao, and C. Sun. 2016. Adsorption of anionic polyacrylamide onto coal and kaolinite: Changes of surface free energy components. Particulate Science and Technology 35 (2):233–38. doi:10.1080/02726351.2016.1152337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.