40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on jet impingement heat transfer analysis in a channel flow embedded with V-shaped patterned surface

ORCID Icon, & ORCID Icon
Pages 12520-12534 | Received 14 Aug 2023, Accepted 16 Oct 2023, Published online: 05 Nov 2023

References

  • Aboghrara, A. M. 2017. Performance analysis of solar air heater with jet impingement on corrugated absorber plate. Case Studies in Thermal Engineering 10:111–20. doi:10.1016/j.csite.2017.04.002.
  • Alam, T., R. Saini, and J. Saini. 2014. Use of turbulators for heat transfer augmentation in an air duct–A review. Renewable Energy 62:689–715. doi:10.1016/j.renene.2013.08.024.
  • Alomar, O. R., H. M. Abd, and M. M. M. Salih. 2022. Efficiency enhancement of solar air heater collector by modifying jet impingement with v-corrugated absorber plate. Journal of Energy Storage 55:105535. doi:10.1016/j.est.2022.105535.
  • Brevet, P. 2002. Heat transfer to a row of impinging jets in consideration of optimization. International Journal of Heat and Mass Transfer 45(20):4191–200. doi:10.1016/S0017-9310(02)00128-X.
  • Chauhan, R., and N. Thakur. 2013. Heat transfer and friction factor correlations for impinging jet solar air heater. Experimental Thermal and Fluid Science 44:760–67. doi:10.1016/j.expthermflusci.2012.09.019.
  • Erasmus, D. J., M. Lubkoll, and T. W. V. Backström. 2021. Jet impingement heat transfer within a hemisphere. Heat and Mass Transfer 57 (6):931–48. doi:10.1007/s00231-020-02977-9.
  • Goel, A. K., and S. Singh. 2019. Performance studies of a jet plate solar air heater with longitudinal fins. International Journal of Ambient Energy 40 (2):119–27. doi:10.1080/01430750.2017.1372808.
  • Goswami, D. Y., et al. 2004. New and emerging developments in solar energy. Solar Energy 76(1–3):33–43. doi:10.1016/S0038-092X(03)00103-8.
  • Kercher, D., and W. Tabakoff. 1970. Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air. Journal of Engineering for Power 92 (1):73–82. doi:10.1115/1.3445306.
  • Kumar, N. 2019. Effect of circular inside conical ring obstacles on heat transfer and friction characteristics of round jets impingement solar air rectangular passage. International Journal of Green Energy 16(14):1091–104. doi:10.1080/15435075.2019.1653877.
  • Kumar, N., A. Kumar, and R. Maithani. 2020. Development of new correlations for heat transfer and pressure loss due to internal conical ring obstacles in an impinging jet solar air heater passage. Thermal Science and Engineering Progress 17:100493. doi:10.1016/j.tsep.2020.100493.
  • Metzger, D., L. W. Florschuetz, D. I. Takeuchi, R. D. Behee, and R. A. Berry. 1979. Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air. Journal of Heat Transfer 101 (3):526–31. doi:10.1115/1.3451022.
  • Mishra, P. K., R. Nadda, R. Kumar, A. Rana, M. Sethi, and A. Ekileski. 2018. Optimization of multiple arcs protrusion obstacle parameters using AHP-TOPSIS approach in an impingement jet solar air passage. Heat and Mass Transfer 54 (12):3797–808. doi:10.1007/s00231-018-2405-4.
  • Nadda, R. 2018. Investigation of thermal and hydrodynamic performance of impingement jets solar air passage with protrusion with combination arc obstacle on the heated plate. Experimental Heat Transfer 31(3):232–50. doi:10.1080/08916152.2017.1405102.
  • Nadda, R., A. Kumar, and R. Maithani. 2018. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renewable and Sustainable Energy Reviews 93:331–53. doi:10.1016/j.rser.2018.05.025.
  • Nadda, R., R. Maithani, and A. Kumar. 2017. Effect of multiple arc protrusion ribs on heat transfer and fluid flow of a circular-jet impingement solar air passage. Chemical Engineering and Processing-Process Intensification 120:114–33. doi:10.1016/j.cep.2017.07.005.
  • Rajaseenivasan, T., S. R. Prasanth, M. S. Antony, and K. Srithar. 2017. Experimental investigation on the performance of an impinging jet solar air heater. Alexandria Engineering Journal 56 (1):63–69. doi:10.1016/j.aej.2016.09.004.
  • Röger, M., R. Buck, and H. Müller-Steinhagen. 2005. Numerical and experimental investigation of a multiple air jet cooling System for application in a SolarThermal receiver. Journal of Heat Transfer 127 (8):863–76. doi:10.1115/1.1928910.
  • Sedighi, E., A. Mazloom, and A. Hakkaki-Fard. 2019. Uniform cooling of a flat surface by an optimized array of turbulent impinging air jets. Heat Transfer Engineering 40 (20):1750–61. doi:10.1080/01457632.2018.1497123.
  • Sharma, A., S. Thakur, and P. Dhiman. 2022. Jet impingement in a V-rib roughened solar air heater: An experimental approach. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (3):6970–84. doi:10.1080/15567036.2022.2105988.
  • Singh, S. 2020. Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renewable Energy 154:1327–45. doi:10.1016/j.renene.2020.03.095.
  • Yadav, S., and R. P. Saini. 2020. Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Solar Energy 208:236–48. doi:10.1016/j.solener.2020.07.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.