68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Techno-economic feasibility and comparison of coal water slurry concentration on a coal to methanol plant with consideration of carbon capture and storage

& ORCID Icon
Pages 12312-12328 | Received 17 Apr 2023, Accepted 16 Oct 2023, Published online: 02 Nov 2023

References

  • Abadie, L. M., and J. M. Chamorro. 2008. European CO2 prices and carbon capture investments. Energy Economics 30 (6):2992–3015. doi:10.1016/j.eneco.2008.03.008.
  • Chenghui, H. Z. 2001. Modified performance index method for parameter estimation for industrial process with time varying. Engineering Science 3 (11):54–59.
  • Cook, P. J. 2017. CCS research development and deployment in a Clean Energy future: Lessons from Australia over the past two decades. Engineering 3 (4):477–84. doi:10.1016/J.ENG.2017.04.014.
  • Duan, Q. B., X. Y. Lv, M. L. Xu, G. F. He, S. J. Zhang, L. M. Zhao, and Y. W. H. C. Liu. 2018. Study on increasing solid content of CWS with three peaks fractal gradation. Clean Coal Technology 24 (6):37–42.
  • Duan, Q. B., X. Y. Lv, M. L. Xu, G. F. He, S. J. Zhang, L. M. Zhao, Y. W. Liu, and H. Chen. 2018. Study of coal water slurry concentration technology based on three-peak fractal gradation. Clean Coal Technology 24 (6):6.
  • Filippov, S. P. 2022. The economics of carbon dioxide capture and storage technologies (review). Thermal Engineering 69 (10):738–50. doi:10.1134/S0040601522100020.
  • Gao, X. Y., Y. H. Zhang. 2023. Feasibility study of China’s carbon tax system under the carbon neutrality target—based on the CGE model. Sustainability 15 (2):1026. doi:10.3390/su15021026.
  • Hu, S. X., F. H. Jiang, B. L. Zhao, Y. M. Chen, C. N. Wu, J. G. Li, and K. Liu. 2021. The enhancement on rheology, flowability, and stability of coal water slurry prepared by multipeak gradation technology. Energy & Fuel 35 (3):2006–15. doi:10.1021/acs.energyfuels.0c03032.
  • Hu, S., J. Li, K. Liu, and Y. Chen. 2022. Comparative study on distribution characteristics of anionic dispersants in coal water slurry. Colloids and Surfaces A: Physicochemical and Engineering Aspects 648:129176. doi:10.1016/j.colsurfa.2022.129176.
  • Liang, J., and Y. F. Wang. 2019. Carbon emissions of modern coal chemical industry and the impacts on economy. China University of Mining & Technology 48 (4):135–40.
  • Liu, X., J. Liang, D. Xiang, S. Yang, and Y. Qian. 2016. A proposed coal-to-methanol process with CO2 capture combined organic rankine cycle (ORC) for iste heat recovery. Journal of Cleaner Production 129:53–64. doi:10.1016/j.jclepro.2016.04.123.
  • Liu, S. Y., H. Y. Li, K. Zhang, and H. C. Lau. 2022. Techno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China’s coal-fired power plants. Journal of Cleaner Production 351:351. doi:10.1016/j.jclepro.2022.131384.
  • Lohisser, R., and R. Madlener. 2012. Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe. Energy Economics 34 (3):850–63. doi:10.1016/j.eneco.2011.07.030.
  • Madejski, P., K. Chmiel, N. Subramanian, and T. Kus. 2022. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern Energy technologies. Energies 15 (3):887. doi:10.3390/en15030887.
  • Ma, Z., X. Liu, G. Li, X. Qiu, D. Yao, Z. Zhu, Y. Wang, J. Gao, and P. Cui. 2021. Energy consumption, environmental performance, and techno-economic feasibility analysis of the biomass-to-hydrogen process with and without carbon capture and storage. Journal of Environmental Chemical Engineering 9 (6):106752. doi:10.1016/j.jece.2021.106752.
  • Orhan, M. F., I. Dincer, and G. F. Naterer. 2008. Cost analysis of a thermochemical cu-cl pilot plant for nuclear-based hydrogen production. International Journal of Hydrogen Energy 33 (21):6006–20. doi:10.1016/j.ijhydene.2008.05.038.
  • Owebor, K., O. E. Diemuodeke, T. A. Briggs, O. J. Eyenubo, O. J. Ogorure, and M. O. Ukoba. 2022. Multi-criteria optimisation of integrated power systems for low-environmental impact. Energy Sources, Part a Recovery, Utilization, & Environmental Effects 44 (2):3459–76. doi:10.1080/15567036.2022.2064565.
  • Pozo, C. A. D., A. J. Alvaro, and S. Cloete. 2022. Methanol from solid fuels: A cost-effective route to reduced emissions and enhanced energy security. Energy Conversion & Management 270:270. doi:10.1016/j.enconman.2022.116272.
  • Satoh, H., T. Oyama, and Y. S. 1989. Proposal and estimation method of economic index for evaluating site plannings of electric power facilities. The Transactions of the Institute of Electrical Engineers of Japan B 109 (3):103–10. doi:10.1002/eej.4391090308.
  • Sun, Z., and M. Aziz. 2021. Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes. Journal of Cleaner Production 321:129023. doi:10.1016/j.jclepro.2021.129023.
  • Wang, L., F. Yan, F. Wang, and Z. Li. 2021. FMEA-CM based quantitative risk assessment for process industries-A case study of coal-to-methanol plant in China. Process Safety and Environmental Protection 149:299–311. doi:10.1016/j.psep.2020.10.052.
  • Wei, Y. M., J. W. Wang, T. Chen, B. Y. Yu, and H. Liao. 2018. Frontiers of low-carbon technologies: Results from bibliographic coupling with sliding window. Journal of Cleaner Production 190:422–31. doi:10.1016/j.jclepro.2018.04.170.
  • Wei, Y. M., B. Y. Yu, H. Li, J. N. Kang, J. W. Wang, and W. M. Chen. 2019. Climate engineering management: An emerging interdisciplinary subject. Journal of Modelling in Management 15 (2):685–702. doi:10.1108/JM2-09-2019-0219.
  • Xiang, D., Y. Qian, Y. Man, and S. Yang. 2014. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process. Applied Energy 113 (113):639–47. doi:10.1016/j.apenergy.2013.08.013.
  • Xiang, D., S. Yang, X. Li, and Y. Qian. 2015. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China. Energy Conversion and Management 90:12–20. doi:10.1016/j.enconman.2014.11.007.
  • Xiang, D., S. Yang, X. Liu, Z. Mai, and Y. Qian. 2014. Techno-economic performance of the coal-to-olefins process with CCS. Chemical Engineering Journal 240 (240):45–54. doi:10.1016/j.cej.2013.11.051.
  • Xiang, D., Q. Yu, Y. Man, and S. Yang. 2014. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process. Applied Energy 113 (jan):639–47. doi:10.1016/j.apenergy.2013.08.013.
  • Xiao, J., S. Wang, S. Ye, J. Dong, J. Wen, and Z. Zhang. 2020. Thermo-economic optimization of gasification process with coal water slurry preheating technology. Energy 199:117354. doi:10.1016/j.energy.2020.117354.
  • Xia, Y., Y. Xing, and X. Gui. 2020. Oily collector pre-dispersion for enhanced surface adsorption during fine low-rank coal flotation. Journal of Industrial & Engineering Chemistry 82:303–08. doi:10.1016/j.jiec.2019.10.026.
  • Yang, D. M., N. Koukouzas, M. Green, and Y. Sheng. 2016. Recent development on underground coal gasification and subsequent CO2 storage. Journal of the Energy Institute 89 (4):469–84. doi:10.1016/j.joei.2015.05.004.
  • Yang, S., X. Liu, Z. Mai, and Q. Yu. 2014. Techno-economic performance of the coal-to-olefins process with CCS. Chemical Engineering Journal 240 (15):45–54 doi:10.1016/j.cej.2013.11.051.
  • Yu, W., X. B. Wang, L. J. Liu, Z. C. Shi, L. N. Wang, and Z. U. Rahman. 2022. Experimental study on pore structure and mechanical dehydration of coal gasification fine slag. Energy Sources, Part a Recovery, Utilization, & Environmental Effects 44 (2):3629–40. doi:10.1080/15567036.2022.2069177.
  • Zahra, Z. G., M. S. Nematollah, and N. Bahaeddin. 2019. Economic evaluation of the effects of exerting green tax on the dispersion of bioenvironmental pollutants based on multi-regional general equilibrium model (GTAP-E). Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (3):9011–22. doi:10.1080/15567036.2019.1679912.
  • Zhang, S., L. Liu, L. Zhang, Y. Zhuang, and J. Du. 2018. An optimization model for carbon capture utilization and storage supply chain: A case study in northeastern China. Applied Energy 231:194–206. doi:10.1016/j.apenergy.2018.09.129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.