65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization analysis of the length of baffles for solar air heaters based on CFD

, & ORCID Icon
Pages 12405-12422 | Received 14 Jun 2023, Accepted 16 Oct 2023, Published online: 05 Nov 2023

References

  • Abbas, S., Y. Yuan, A. Hassan, Zhou J, Ji W, Yu T, Rehman, UU, Yousuf S. 2022. Design a low-cost, medium-scale, flat plate solar air heater: An experimental and simulation study. Journal of Energy Storage 56:105858. doi:10.1016/j.est.2022.105858.
  • Abuşka, M., and S. Şevik. 2017. Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper. Solar Energy 158:259–77. doi:10.1016/j.solener.2017.09.045.
  • Abuşka, M., S. Şevik, and A. Kayapunar. 2019. Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Solar Energy Materials and Solar Cells 195:299–308. doi:10.1016/j.solmat.2019.02.040.
  • Asadbeigi, M., F. Ghafoorian, M. Mehrpooya, Chegini S, Jarrahian A. 2023. A 3D study of the darrieus wind turbine with auxiliary blades and economic analysis based on an optimal design from a parametric investigation. Sustainability. 15(5):4684. doi:10.3390/su15054684.
  • Delpisheh, M., M. A. Haghghi, M. Mehrpooya, Chitsaz A, Athari H. 2021. Design and financial parametric assessment and optimization of a novel solar-driven freshwater and hydrogen cogeneration system with thermal energy storage. Sustainable Energy Technologies and Assessments 45:101096. doi:10.1016/j.seta.2021.101096.
  • Farajyar, S., F. Ghafoorian, M. Mehrpooya, Asadbeigi M. 2023. CFD investigation and optimization on the aerodynamic performance of a savonius vertical axis wind turbine and its installation in a hybrid power supply System: A case study in Iran. Sustainability. 15(6):5318. doi:10.3390/su15065318.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, Chamoli S. 2016. Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Solar Energy 131:275–95. doi:10.1016/j.solener.2016.02.040.
  • Handoyo, E. A., and D. Ichsani. 2016. Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater. Solar Energy 131:47–60. doi:10.1016/j.solener.2016.02.031.
  • Hu, J. J., G. Q. Zhang, Q. Zhu, Guo M, Chen L. 2019. A self-driven mechanical ventilated solar air collector: Design and experimental study. Energy 189:116287. doi:10.1016/j.energy.2019.116287.
  • Iranmanesh, M., Samimi Akhijahani, H., and Barghi Jahromi, M. S. 2020. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy 145:1192–1213. doi:10.1016/j.renene.2019.06.038.
  • Jia, B., F. Liu, X. Li, Qu A, Cai Q. 2021. Influence on thermal performance of spiral solar air heater with longitudinal baffles. Solar Energy 225:969–77. doi:10.1016/j.solener.2021.08.004.
  • Jia, B., F. Liu, and D. Wang. 2019a. Experimental study on the performance of spiral solar air heater.Solar energy. Solar Energy 182 (182):16–21. doi:10.1016/j.solener.2019.02.033.
  • Jia, B., F. Liu, D. Wang. 2019b. Optimization of flow path for the spoiler solar air collector. Chemical Industry & Engineering Progress 38 (2):819–25.
  • Jia, B., L. Yang, L. Zhang, Liu B, Liu F, Li X. 2021. Optimizing structure of baffles on thermal performance of spiral solar air heaters. Solar Energy 224:757–64. doi:10.1016/j.solener.2021.06.043.
  • Kim, Y., K. Lee, L. Yang, Entchev E, Kang, EC, Lee, EJ. 2020. Validation and numerical sensitivity study of air baffle photovoltaic-thermal module. Energies. 13(8):1990. doi:10.3390/en13081990.
  • Li, X., and W. Zhang. 2017. Design and experiment of flat plate solar air collector with double serpentine flow passages. Journal of Heilongjiang Bayi Agricultural University 29 (4):94–8+118.
  • Mabrouk, A. B., H. Djemel, M. Hammami, and M. Baccar. 2023. CFD modeling of rectangular solar air heater featuring curved flow passage in turbulent flow. Heat and Mass Transfer 2022 (1):1–20. doi:10.1007/s00231-022-03239-6.
  • Manjunath, M. S., K. V. Karanth, and N. Y. Sharma. 2018. Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences 138:219–28. doi:10.1016/j.ijmecsci.2018.01.037.
  • Matheswaran, M. M., T. V. Arjunan, S. Muthusamy, Natrayan L, Panchal H, Subramaniam S, Khedkar, NK, El-Shafay, AS, Sonawane C. 2022. A case study on thermo-hydraulic performance of jet plate solar air heater using response surface methodology. Case Studies in Thermal Engineering 34:101983. doi:10.1016/j.csite.2022.101983.
  • Mehrpooya, M., F. Ghafoorian, and S. Farajyar. 2023. 3D-modeling of a coaxial borehole heat exchanger in Sahand Field, Northwest Iran considering the porous medium and presence of nanofluids. Iranian Journal of Chemistry & Chemical Engineering.
  • Mehrpooya, M., M. Marefati, and M. Marefati. 2021. Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system. Renewable Energy 164:194–210. doi:10.1016/j.renene.2020.09.068.
  • Olfian, H., A. Zabihi Sheshpoli, and S. S. Mousavi Ajarostaghi. 2020. Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transfer 49 (3):1149–69. doi:10.1002/htj.21656.
  • Qamar, Z., A. Munir, T. Langrish, Ghafoor A, Tahir M. 2023. Experimental and numerical Simulations of a solar air heater for maximal value addition to agricultural Products. Agriculture. 13 (2):13020387. doi:10.3390/agriculture13020387.
  • Rajendran, V., H. Ramasubbu, J. V. Rajarathinam, and R. Pichandi. 2022. Experimental study on the thermal performance of a solar air heater integrated with multi-geometry arrangements over the absorber plate. Environmental Science and Pollution Research 29 (25):1–15. doi:10.1007/s11356-022-18830-x.
  • Sari, A., M. Sadi, G. Shafiei Sabet, Ghafoor A, Tahir M. 2021. Experimental analysis and exergetic assessment of the solar air collector with delta winglet vortex generators and baffles. Journal of Thermal Analysis and Calorimetry. 145(3):867–85. doi:10.1007/s10973-020-10298-6.
  • Saxena, A., G. Srivastava, and V. Tirth. 2015. Design and thermal performance evaluation of a novel solar air heater. Renewable Energy 77:501–11. doi:10.1016/j.renene.2014.12.041.
  • Sharma, S. K., and V. R. Kalamkar. 2017. Experimental and numerical investigation of forced convective heat transfer in solar air heater with thin ribs. Solar Energy 147:277–91. doi:10.1016/j.solener.2017.03.042.
  • Singh, S., A. Singh, and S. Chander. 2019. Thermal performance of a fully developed serpentine wavy channel solar air heater. Journal of Energy Storage 25:100896. doi:10.1016/j.est.2019.100896.
  • Song, Z., Y. Xue, B. Jia, and Y. He. 2022. Introduction of the rectangular hole plate in favor the performance of photovoltaic thermal solar air heaters with baffles. Applied Thermal Engineering 220:119774. doi:10.1016/j.applthermaleng.2022.119774.
  • Tan, A., J. Janaun, H. Tham, N. J. Siambun, and A. Abdullah. 2021. Performance enhancement of a baffle-type solar heat collector through CFD simulation study[C]//IOP publishing. IOP Conference Series: Materials Science & Engineering 1195 (1):012040. doi:10.1088/1757-899X/1195/1/012040.
  • Wang, L. 2022. Research on the collect heat performance of new type collector. Energy sources, part A: Recovery. Utilization, and Environmental Effects 2021 (4):1–16. doi:10.1080/15567036.2021.1954729.
  • Wang, L., and Y. Man. 2018. Numerical simulation of baffled baffle plate solar air collector. Renewable Energy Resource 36 (7):997–1003.
  • Zina, B., A. Filali, N. Benamara, S. Laouedj, and H. Ahmed. 2020. Numerical simulation of heat transfer improvement of a new designed artificially roughened solar air heater using triangular ribs with semi-circular nooks. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 2020:1–17. doi:10.1080/15567036.2020.1825564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.