80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of n-butanol addition to hydrogenated catalytic biodiesel fueled a constant volume combustion chamber; a computational study

ORCID Icon, , &
Pages 12553-12569 | Received 14 Feb 2023, Accepted 17 Oct 2023, Published online: 05 Nov 2023

References

  • Abomohra, A. E.-F., Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D. 2020. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Progress in Energy and Combustion Science 81:100868. doi:10.1016/j.pecs.2020.100868.
  • Algayyim, S. J. M., Wandel, AP, Yusaf T, Al-Lwayzy S. 2019. Butanol–acetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission. Proceedings of the Combustion Institute: International Symposium on Combustion 37 (4):4729–39. doi:10.1016/j.proci.2018.08.035.
  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combustion & Flame 121 (1):122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Asokan, M. A., and S. Senthur Prabu. 2023. Effect of n-butanol on cotton seed oil biodiesel: An approach for improving the emission behavior of DI diesel engine. Petroleum Science and Technology 41 (11):1162–80. doi:10.1080/10916466.2022.2092131.
  • Assad, M., V. V. Leschevich, O. G. Penyazkov, K. L. Sevrouk, V. E. Tangirala, and N. D. Joshi. 2009. Auto-ignitions of n-hexadecane and heptamethylnonane at high temperatures. In Nonequilibrium phenomena: Plasma, combustion, atmosphere, 210–20. Moscow: Torus Press.
  • Aydin, H., H. Bayindir, and C. İlkiliç. 2010. Emissions from an engine fueled with biodiesel-kerosene blends. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 33 (2):130–37. doi:10.1080/15567030902937150.
  • Çelebi, Y., and H. Aydın. 2018. Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine. Fuel 222:385–93. doi:10.1016/j.fuel.2018.02.174.
  • Çelebi, Y., and H. Aydın. 2019. An overview on the light alcohol fuels in diesel engines. Fuel 236:890–911. doi:10.1016/j.fuel.2018.08.138.
  • Chang, Y., Jia M, Liu Y, Li Y, Xie M, Yin H. 2013. Application of a decoupling methodology for development of skeletal oxidation mechanisms for heavy n-alkanes from n-octane to n-hexadecane. Energy & Fuels 27 (6):3467–79. doi:10.1021/ef400460d.
  • Chang, Y., M. Jia, J. Xiao, Y. Li, W. Fan, and M. Xie. 2016. Construction of a skeletal mechanism for butanol isomers based on the decoupling methodology. Energy Conversion and Management 128:250–60. doi:10.1016/j.enconman.2016.09.078.
  • Cheng, C.-L., P.-Y. Che, B.-Y. Chen, W.-J. Lee, L.-J. Chien, and J.-S. Chang. 2012. High yield bio-butanol production by solvent-producing bacterial microflora. Bioresource Technology 113:58–64. doi:10.1016/j.biortech.2011.12.133.
  • Chernov, V., M. J. Thomson, S. B. Dworkin, N. A. Slavinskaya, and U. Riedel. 2014. Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth. Combustion & Flame 161 (2):592–601. doi:10.1016/j.combustflame.2013.09.017.
  • Choo, E. J., X. Cheng, G. Scribano, H. K. Ng, and S. Gan. 2023. Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion. Energy 268:126770. doi:10.1016/j.energy.2023.126770.
  • Fadhil, A. B., S. H. Sedeeq, and N. M. T. Al-Layla. 2019. Transesterification of non-edible seed oil for biodiesel production: Characterization and analysis of biodiesel. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 41 (7):892–901. doi:10.1080/15567036.2018.1520367.
  • Fatima, R., and S. Iram. 2020. A model of eco-friendly cooking stove and a potential application of soot for remediation of heavy metals in the environment. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–17. doi:10.1080/15567036.2020.1827087.
  • Froessling, N. 1958. Evaporation, heat transfer, and velocity distribution in two-dimensional and rotationally symmetrical laminar boundary-layer flow N.A.C.A. 168 (1956):AD–B189.
  • Ganesan, N., T. H. Le, P. Ekambaram, D. Balasubramanian, V. V. Le, and A. T. Hoang. 2022. Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel. Journal of Cleaner Production 330:129781. doi:10.1016/j.jclepro.2021.129781.
  • Geng, L., Y. Chen, X. Chen, and C.-F. F. Lee. 2019. Study on combustion characteristics and particulate emissions of a common-rail diesel engine fueled with n-butanol and waste cooking oil blends. Journal of the Energy Institute 92 (3):438–49. doi:10.1016/j.joei.2018.05.004.
  • Graham-Rowe, D. 2011. Agriculture: Beyond food versus fuel. Nature 474 (7352):S6–S8. doi:10.1038/474S06a.
  • Han, Z., and R. D. Reitz. 1995. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combustion Science and Technology 106 (4–6):267–95. doi:10.1080/00102209508907782.
  • Heufer, K. A., R. X. Fernandes, H. Olivier, J. Beeckmann, O. Röhl, and N. Peters. 2011. Shock tube investigations of ignition delays of n-butanol at elevated pressures between 770 and 1250 K. Proceedings of the Combustion Institute: International Symposium on Combustion 33 (1):359–66. doi:10.1016/j.proci.2010.06.052.
  • Jamrozik, A. 2017. The effect of the alcohol content in the fuel mixture on the performance and emissions of a direct injection diesel engine fueled with diesel-methanol and diesel-ethanol blends. Energy Conversion and Management 148:461–76. doi:10.1016/j.enconman.2017.06.030.
  • Knothe, G., and L. F. Razon. 2017. Biodiesel fuels. Progress in Energy and Combustion Science 58:36–59. doi:10.1016/j.pecs.2016.08.001.
  • Lapuerta, M., J. J. Hernández, D. Fernández-Rodríguez, and A. Cova-Bonillo. 2017. Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber. Energy 118:613–21. doi:10.1016/j.energy.2016.10.090.
  • Leung, K. M., R. P. Lindstedt, and W. P. Jones. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combustion and Flame 87 (3–4):289. doi:10.1016/0010-2180(91)90114-Q.
  • Liu, H., X. Wang, Z. Zheng, J. Gu, H. Wang, and M. Yao. 2014. Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy 74:741–52. doi:10.1016/j.energy.2014.07.041.
  • Mack, J. H., D. Schuler, R. H. Butt, and R. W. Dibble. 2016. Experimental investigation of butanol isomer combustion in homogeneous charge compression ignition (HCCI) engines. Applied Energy 165:612–26. doi:10.1016/j.apenergy.2015.12.105.
  • Mahmoud, N. M., W. Zhong, T. Abdalla, Q. Wang, and E. M. A. Edreis. 2020. Chemical effects of CO2 and H2O addition on aromatic species in ethanol/air diffusion flame. Combustion Science and Technology 194 (3):1–19. doi:10.1080/00102202.2020.1776705.
  • Mahmoud, N. M., W. Zhong, J. N. Ibrahim, and Q. Wang. 2021. Flame structure and soot-precursor formation of coflow n-heptane diffusion flame burning in O2/N2 and O2/CO2 atmosphere. Journal of Energy Engineering 147 (4):04021027. doi:10.1061/(ASCE)EY.1943-7897.0000776.
  • Mallapaty, S. 2020. How china could be carbon neutral by mid-century. Nature 586 (7830):482–83. doi:10.1038/d41586-020-02927-9.
  • Mo, J., C. Tang, J. Li, L. Guan, and Z. Huang. 2016. Experimental investigation on the effect of n-butanol blending on spray characteristics of soybean biodiesel in a common-rail fuel injection system. Fuel 182:391–401. doi:10.1016/j.fuel.2016.05.109.
  • Nagle, J.1962. Oxidation of carbon between 1000-2000℃. Proceedings of Fifth Carbon Conference, London, England.
  • Neoh, K. G., J. B. Howard, and A. F. Sarofim. 1985. Effect of oxidation on the physical structure of soot. Symposium (International) on Combustion 20 (1):951–57. doi:10.1016/S0082-0784(85)80584-1.
  • No, NoS.-Y. 2016. Application of biobutanol in advanced CI engines – a review. Fuel 183:641–58. doi:10.1016/j.fuel.2016.06.121.
  • Panda, K., and A. Ramesh. 2021. Diesel injection strategies for reducing emissions and enhancing the performance of a methanol based dual fuel stationary engine. Fuel 289:119809. doi:10.1016/j.fuel.2020.119809.
  • Pang, B., M.-Z. Xie, M. Jia, and Y.-D. Liu. 2013. Development of a phenomenological soot model coupled with a skeletal PAH mechanism for practical engine simulation. Energy & Fuels 27 (3):1699–711. doi:10.1021/ef400033f.
  • Pickett, L. M. 2012. Engine combustion network. http://www.sandia.gov/ecn/.
  • Pinzi, S., M. D. Redel-Macías, D. E. Leiva-Candia, J. A. Soriano, and M. P. Dorado. 2017. Influence of ethanol/diesel fuel and propanol/diesel fuel blends over exhaust and noise emissions. Energy Procedia 142:849–54. doi:10.1016/j.egypro.2017.12.136.
  • Qiu, L., X. Cheng, Z. Li, and H. Wu. 2018. Experimental and numerical investigation on soot volume fractions and number densities in non-smoking laminar n-heptane/n-butanol coflow flames. Combustion & Flame 191:394–407. doi:10.1016/j.combustflame.2018.01.024.
  • Qiu, L., X. Cheng, X. Wang, Z. Li, Y. Li, Z. Wang, and H. Wu. 2016. Development of a reduced n-decane/α-methylnaphthalene/polycyclic aromatic hydrocarbon mechanism and its application for combustion and soot prediction. Energy & Fuels 30 (12):10875–85. doi:10.1021/acs.energyfuels.6b02186.
  • Rajesh Kumar, B., and S. Saravanan. 2015. Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel 160:217–26. doi:10.1016/j.fuel.2015.07.089.
  • Rakopoulos, D. C. 2013. Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine. Fuel 105:603–13. doi:10.1016/j.fuel.2012.08.023.
  • Reaction Design. 2016. CHEMKIN 15151, ANSYS reaction Design. CA, US: San Diego.
  • Ricart, L. M., R. D. Reltz, and J. E. Dec. 2000. Comparisons of diesel spray liquid penetration and vapor fuel distributions with in-cylinder optical measurements. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME 122 (4):588–95. doi:10.1115/1.1290591.
  • Richards, K., P. Senecal, and E. Pomraning. 2016. CONVERGE (v2.3). Madison (WI): Convergent Science.
  • Schmidt, D. P., and C. J. Rutland. 2000. A new droplet collision algorithm. Journal of Computational Physics 164 (1):62–80. doi:10.1006/jcph.2000.6568.
  • Senecal, P. K., Pomraning, E, Richards, KJ, Briggs, TE, Choi, CY, McDavid, RM, Patterson, MA. 2003. Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE Technical Paper 2003-01-1043. 10.4271/2003-01-1043.
  • Smeets, E., A. Tabeau, S. van Berkum, J. Moorad, H. van Meijl, and G. Woltjer. 2014. The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review. Renewable and Sustainable Energy Reviews 38:393–403. doi:10.1016/j.rser.2014.05.035.
  • Thakkar, K., S. S. Kachhwaha, P. Kodgire, and S. Srinivasan. 2021. Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control. Renewable and Sustainable Energy Reviews 137:110468. doi:10.1016/j.rser.2020.110468.
  • Verhelst, S., J. W. Turner, L. Sileghem, and J. Vancoillie. 2019. Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science 70:43–88. doi:10.1016/j.pecs.2018.10.001.
  • Vishwanathan, G., and R. D. Reitz. 2010. Development of a practical soot modeling approach and its application to low-temperature diesel combustion. Combustion Science and Technology 182 (8):1050–82. doi:10.1080/00102200903548124.
  • Vishwanathan, G., and R. D. Reitz. 2015. Application of a semi-detailed soot modeling approach for conventional and low temperature diesel combustion – Part I: Model performance. Fuel 139:757–70. doi:10.1016/j.fuel.2014.08.026.
  • Vranckx, S., K. A. Heufer, C. Lee, H. Olivier, L. Schill, W. A. Kopp, K. Leonhard, C. A. Taatjes, and R. X. Fernandes. 2011. Role of peroxy chemistry in the high-pressure ignition of n-butanol – experiments and detailed kinetic modelling. Combustion & Flame 158 (8):1444–55. doi:10.1016/j.combustflame.2010.12.028.
  • Wang, Y., and S. Ho Chung. 2019. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 74:152–238. doi:10.1016/j.pecs.2019.05.003.
  • Wang, X., H. Liu, Z. Zheng, and M. Yao. 2015. Development of a reduced n-butanol/biodiesel mechanism for a dual fuel engine. Fuel 157:87–96. doi:10.1016/j.fuel.2015.04.053.
  • Wei, L., C. S. Cheung, and Z. Ning. 2018. Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. Energy 155:957–70. doi:10.1016/j.energy.2018.05.049.
  • Xiao, H., F. Guo, S. Li, R. Wang, and X. Yang. 2019. Combustion performance and emission characteristics of a diesel engine burning biodiesel blended with n-butanol. Fuel 258:115887. doi:10.1016/j.fuel.2019.115887.
  • Xiao, H., F. Guo, R. Wang, X. Yang, S. Li, and J. Ruan. 2020. Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel 268:117387. doi:10.1016/j.fuel.2020.117387.
  • Xuan, T., J. Cao, Z. He, Q. Wang, W. Zhong, X. Leng, D. Li, and W. Shang. 2018. A study of soot quantification in diesel flame with hydrogenated catalytic biodiesel in a constant volume combustion chamber. Energy 145:691–99. doi:10.1016/j.energy.2017.12.106.
  • Yan, F., W. Zhong, Q. Xiang, T. Pachiannan, W. Wang, Z. He, and Q. Wang. 2023. Experimental investigation of the two-stage ignition delay and flame structure of pentanol/n-dodecane binary fuel. Energy 262:125546. doi:10.1016/j.energy.2022.125546.
  • Yilmaz, N., F. M. Vigil, K. Benalil, S. M. Davis, and A. Calva. 2014. Effect of biodiesel–butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel 135:46–50. doi:10.1016/j.fuel.2014.06.022.
  • Yuan, W. H., J. Liao, B. Li, and W. Zhong. 2020. Experimental study on spray characteristics of gasoline/hydrogenated catalytic biodiesel under GCI conditions. Journal of Chemistry 2020:1–9. doi:10.1155/2020/4285460.
  • Zhang, Z.-H., and R. Balasubramanian. 2016. Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Applied Energy 163:71–80. doi:10.1016/j.apenergy.2015.10.173.
  • Zhang, Y., Z. Li, P. Tamilselvan, C. Jiang, Z. He, W. Zhong, Y. Qian, Q. Wang, and X. Lu. 2019. Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends. Energy 187:115931. doi:10.1016/j.energy.2019.115931.
  • Zhong, W., B. Li, Z. He, T. Xuan, P. Lu, and Q. Wang. 2019. Experimental study on spray and combustion of gasoline/hydrogenated catalytic biodiesel blends in a constant volume combustion chamber aimed for GCI engines. Fuel 253:129–38. doi:10.1016/j.fuel.2019.04.114.
  • Zhong, W., N. M. Mahmoud, and Q. Wang. 2022. Numerical study of spray combustion and soot emission of gasoline–biodiesel fuel under gasoline compression ignition-relevant conditions. Fuel 310:122293. doi:10.1016/j.fuel.2021.122293.
  • Zhong, W., Q. Xiang, T. Pachiannan, N. M. Mahmoud, B. Li, Z. He, Q. Wang, and J. Sun. 2021. Experimental study on in-flame soot formation and soot emission characteristics of gasoline/hydrogenated catalytic biodiesel blends. Fuel 289:119813. doi:10.1016/j.fuel.2020.119813.
  • Zhong, W., Q. Yuan, J. Liao, N. M. Mahmoud, W. Yuan, Z. He, Q. Wang, L. Yu, and X. Lu. 2022. Experimental and modeling study of the autoignition characteristics of gasoline/hydrogenated catalytic biodiesel blends over low-to-intermediate temperature. Fuel 313:122919. doi:10.1016/j.fuel.2021.122919.
  • Zhu, M., H. Y. Setyawan, Z. Zhang, and D. Zhang. 2020. Effect of n-butanol addition on the burning rate and soot characteristics during combustion of single droplets of diesel–biodiesel blends. Fuel 265:117020. doi:10.1016/j.fuel.2020.117020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.