102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the amount of water on reducing Lix(OH)yClz hydroxide phases in the synthesis of Li3OCl anti-perovskite as a solid electrolyte in Li-ion batteries

, , &
Pages 12619-12632 | Received 31 May 2023, Accepted 16 Oct 2023, Published online: 11 Nov 2023

References

  • Bachman, J. C., S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, and P. Lamp. 2015. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chemical Reviews 116 (1):140–62. doi:10.1021/acs.chemrev.5b00563.
  • Braga, M. H., J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-Azab. 2014. Novel Li3ClO based glasses with superionic properties for lithium batteries. Journal of Materials Chemistry A 2 (15):5470–80. doi:10.1039/c3ta15087a.
  • Braga, M. H., A. J. Murchison, J. A. Ferreira, P. Singh, and J. B. Goodenough. 2016. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy & Environmental Science 9:948–54. doi:10.1039/c5ee02924d.
  • Byrappa, K., N. Keerthiraj, and S. M. Byrappa. 2015. Hydrothermal growth of crystals—design and processing. Handb. Cryst ed., 535–75. Growth, Elsevier.
  • Byrappa, K., M. Yoshimura, and M. Toshimura. 2001. Handbook of hydrothermal technology: A technology for crystal growth and Materials processing. Noyes Publications. doi:10.1016/b978-081551445-9.50002-7.
  • Dondelinger, M., J. Swanson, G. Nasymov, C. Jahnke, Q. Qiao, J. Wu, C. Widener, A. M. Numan-Al-Mobin, and A. Smirnova. 2019. Electrochemical stability of lithium halide electrolyte with antiperovskite crystal structure. Electrochimica acta 306:498–505. doi:10.1016/j.electacta.2019.03.074.
  • Ganesh, P., P. R. C. Kent, and D. Jiang. 2012. Solid–electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics. The Journal of Physical Chemistry C 116 (46):24476–81. doi:10.1021/jp3086304.
  • Ghanbari, A., Z. Khakpour, A. Faeghinia, and A. Massoudi. 2023. The effect of Sr2+ and thermal treatment conditions on electrochemical characteristics of Li3OCl solid electrolyte in batteries. Journal of Energy Storage 73:108890. doi:10.1016/j.est.2023.108890.
  • Hanghofer, I., G. J. Redhammer, S. Rohde, I. Hanzu, A. Senyshyn, H. M. R. Wilkening, and D. Rettenwander. 2018. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries. Chemistry of Materials: A Publication of the American Chemical Society 30 (22):8134–44. doi:10.1021/acs.chemmater.8b02568.
  • Hebb, M. H. 1952. Electrical conductivity of silver sulfide. Journal of Chemical Physics 20 (1):185–90. doi:10.1063/1.1700165.
  • Heenen, H. H., J. Voss, C. Scheurer, K. Reuter, and A. C. Luntz. 2019. Multi-ion conduction in Li3OCl glass electrolytes. The Journal of Physical Chemistry Letters 10:2264–69. doi:10.1021/acs.jpclett.9b00500.
  • Hitz, G. T., E. D. Wachsman, and V. Thangadurai. 2013. Highly Li-stuffed garnet-type Li7+ xLa3zr2-xYxo12. Journal of the Electrochemical Society 160 (8):A1248. doi:10.1149/2.088308jes.
  • Koedtruad, A., M. A. Patino, N. Ichikawa, D. Kan, and Y. Shimakawa. 2020. Crystal structures and ionic conductivity in Li2OHX (X= Cl, Br) antiperovskites. Journal of Solid State Chemistry 286:121263. doi:10.1016/j.jssc.2020.121263.
  • Lee, H., P. Oh, J. Kim, H. Cha, S. Chae, S. Lee, J. Cho, Advances and prospects of sulfide All‐solid‐state lithium batteries via one‐to‐one comparison with conventional liquid lithium ion batteries, Advanced Materials. 31 (2019) 1900376. 10.1002/adma.201900376.
  • Li, S., J. Zhu, Y. Wang, J. W. Howard, X. Lü, Y. Li, R. S. Kumar, L. Wang, L. L. Daemen, and Y. Zhao. 2016. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br). Solid State Ionics 284:14–19. doi:10.1016/j.ssi.2015.11.027.
  • Lü, X., J. W. Howard, A. Chen, J. Zhu, S. Li, G. Wu, P. Dowden, H. Xu, Y. Zhao, and Q. Jia. 2016. Antiperovskite Li3 OCl superionic conductor films for solid-state li-ion batteries. Advancement of Science 3. doi:10.1002/advs.201500359.
  • Lü, X., G. Wu, J. W. Howard, A. Chen, Y. Zhao, L. L. Daemen, and Q. Jia. 2014. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chemical Communications 50:11520–22. doi:10.1039/c4cc05372a.
  • Mehmedović, Z., V. Wei, A. Grieder, P. Shea, B. C. Wood, and N. Adelstein. 2021. Impacts of vacancy-induced polarization and distortion on diffusion in solid electrolyte Li 3 OCl, Philos. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379 (2211). doi:10.1098/rsta.2019.0459.
  • Ohta, S., J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka. 2014. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. Journal of Power Sources 265:40–44. doi:10.1016/j.jpowsour.2014.04.065.
  • Reckeweg, O., B. Blaschkowski, and T. Schleid. 2012. Li5OCl3 and Li3OCl: Two remarkably different lithium oxide chlorides. Zeitschrift für anorganische und allgemeine Chemie 638 (12–13):2081–86. doi:10.1002/zaac.201200143.
  • Schawe, J. E. K. K. 1996. Investigations of the glass transitions of organic and inorganic substances: DSC and temperature-modulated DSC. Journal of Thermal Analysis and Calorimetry 47:475–84. doi:10.1007/BF01983989.
  • Schweikert, N., A. Hofmann, M. Schulz, M. Scheuermann, S. T. Boles, T. Hanemann, H. Hahn, and S. Indris. 2013. Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy. Journal of Power Sources 228:237–43. doi:10.1016/j.jpowsour.2012.11.124.
  • Song, A. Y., Y. Xiao, K. Turcheniuk, P. Upadhya, A. Ramanujapuram, J. Benson, A. Magasinski, M. Olguin, L. Meda, O. Borodin, et al. 2018. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups. Advanced Energy Materials 8:1–11. doi:10.1002/aenm.201700971.
  • Suchanek, W. L., M. M. Lencka, and R. E. Riman. 2004. Hydrothermal synthesis of ceramic materials. In Aqueous Systems at Elevated Temperatures, 717–44. Press., Elsevier. doi:10.1016/B978-012544461-3/50019-3.
  • Truong, L., J. Colter, and V. Thangadurai. 2013. Chemical stability of Li-stuffed garnet-type Li5+ xBaxla3− xTa2o12 (x= 0, 0.5, 1) in water: A comparative analysis with the Nb analogue. Solid State Ionics 247:1–7. doi:10.1016/j.ssi.2013.05.013.
  • Truong, L., M. Howard, O. Clemens, K. S. Knight, P. R. Slater, and V. Thangadurai. 2013. Facile proton conduction in H+/Li+ ion-exchanged garnet-type fast Li-ion conducting Li5La3Nb 2O12. Journal of Materials Chemistry A 1 (43):13469–75. doi:10.1039/c3ta13005c.
  • Vadhva, P., J. Hu, M. J. Johnson, R. Stocker, M. Braglia, D. J. L. L. Brett, and A. J. E. E. Rettie. 2021. Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries: Theory. Methods and Future Outlook, ChemElectrochem 8 (11):1930–47. doi:10.1002/celc.202100108.
  • Xu, H., M. Xuan, W. Xiao, Y. Shen, Z. Li, Z. Wang, J. Hu, and G. Shao. 2019. Lithium ion conductivity in double antiperovskite Li6. 5OS1. 5I1. 5: Alloying and boundary effects. ACS Applied Energy Materials 2 (9):6288–94. doi:10.1021/acsaem.9b00861.
  • Yang, H., G. V. Zhuang, P. N. Ross Jr, and P. N. Ross. 2006. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources 161 (1):573–79. doi:10.1016/j.jpowsour.2006.03.058.
  • Yang, Y., J. Han, M. DeVita, S. S. Lee, and J. C. Kim. 2020. Lithium and chlorine-rich preparation of mechanochemically activated antiperovskite composites for solid-state batteries. Frontiers in Chemistry 8:902. doi:10.3389/fchem.2020.562549.
  • Zhao, Y., and L. L. Daemen. 2012. Superionic conductivity in lithium-rich anti-perovskites. Journal of the American Chemical Society 134 (36):15042–47. doi:10.1021/ja305709z.
  • Zheng, F., M. Kotobuki, S. Song, M. O. Lai, and L. Lu. 2018. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources 389:198–213. doi:10.1016/j.jpowsour.2018.04.022.
  • Zheng, J., B. Perry, and Y. Wu. 2021. Antiperovskite superionic conductors: A critical review. ACS Materials Au 1 (2):92–106. doi:10.1021/acsmaterialsau.1c00026.
  • Zhu, J., S. Li, Y. Zhang, J. W. Howard, X. Lü, Y. Li, Y. Wang, R. S. Kumar, L. Wang, and Y. Zhao. 2016. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. Applied Physics Letters 109 (10):101904. doi:10.1063/1.4962437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.