65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation on spray and flow field characteristics of elliptical nozzle in supersonic crossflow

ORCID Icon, , , ORCID Icon &
Pages 12774-12790 | Received 10 Oct 2022, Accepted 23 Apr 2023, Published online: 11 Nov 2023

References

  • Almeida, H., J. M. M. Sousa, and M. Costa. 2014. Effect of the liquid injection angle on the atomization of liquid jets in subsonic crossflows. Atomization and Sprays 24 (1). doi:10.1615/AtomizSpr.2013008310.
  • Broumand, M., M. M. Ahmed, and M. Birouk. 2019. Experimental investigation of spray characteristics of a liquid jet in a turbulent subsonic gaseous crossflow. Proceedings of the Combustion Institute 37 (3):3237–44. doi:10.1016/j.proci.2018.08.004.
  • Chen, S., and D. Zhao. 2019. RANS investigation of the effect of pulsed fuel injection on scramjet HyShot II engine. Aerospace Science and Technology 84:182–92. doi:10.1016/j.ast.2018.10.022.
  • Choubey, G., and K. M. Pandey. 2018. Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor. Acta Astronautica 145:93–104. doi:10.1016/j.actaastro.2018.01.034.
  • Das, N., K. M. Pandey, and K. K. Sharma. 2021. A brief review on the recent advancement in the field of jet engine-scramjet engine. Materials Today: Proceedings 45:6857–63. doi:10.1016/j.matpr.2020.12.1035.
  • Huang, W. 2016. Transverse jet in supersonic crossflows. Aerospace Science and Technology 50:183–95. doi:10.1016/j.ast.2016.01.001.
  • Iwasa, T., and N. Tsuboi. 2022. Numerical simulation of jet mixing in supersonic crossflow: Effect of jet exit geometry. TRANSACTIONS of the JAPAN SOCIETY for AERONAUTICAL and SPACE SCIENCES 65 (4):172–84. doi:10.2322/tjsass.65.172.
  • Li, C., L. Chun, F. Xiao, L. Qinglian, and Y. Zhu. 2019. Experimental study of spray characteristics of liquid jets in supersonic crossflow. Aerospace Science and Technology 95:105426. doi:10.1016/j.ast.2019.105426.
  • Li, C., L. Peibo, L. Chun, L. Qinglian, and Y. Zhou. 2020. Experimental and numerical investigation of cross-sectional structures of liquid jets in supersonic crossflow. Aerospace Science and Technology 103:105926. doi:10.1016/j.ast.2020.105926.
  • Li, P., H. Wang, M. Sun, C. Liu, and L. Fei. 2021. Numerical study on the mixing and evaporation process of a liquid kerosene jet in a scramjet combustor. Aerospace Science and Technology 119:107095. doi:10.1016/j.ast.2021.107095.
  • Li, P., Z. Wang, X.-S. Bai, H. Wang, M. Sun, W. Liyin, and C. Liu. 2019. Three-dimensional flow structures and droplet-gas mixing process of a liquid jet in supersonic crossflow. Aerospace Science and Technology 90:140–56. doi:10.1016/j.ast.2019.04.024.
  • Li, P., Z. Wang, M. Sun, and H. Wang. 2017. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow. Acta Astronautica 134:333–44. doi:10.1016/j.actaastro.2016.12.025.
  • Liu, N., Z. Wang, M. Sun, R. Deiterding, and H. Wang. 2019. Simulation of liquid jet primary breakup in a supersonic crossflow under adaptive mesh refinement framework. Aerospace Science and Technology 91:456–73. doi:10.1016/j.ast.2019.05.017.
  • Morad, M. R., and H. Khosrobeygi. 2019. Penetration of elliptical liquid jets in low-speed crossflow. Journal of Fluids Engineering 141 (1). doi:10.1115/1.4040373.
  • Ren, Z., B. Wang, G. Xiang, D. Zhao, and L. Zheng. 2019. Supersonic spray combustion subject to scramjets: Progress and challenges. Progress in Aerospace Sciences 105:40–59. doi:10.1016/j.paerosci.2018.12.002.
  • Runsheng, H., L. Qinglian, L. Chun, and L. Chenyang. 2019. Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow. Acta Astronautica 159:440–51. doi:10.1016/j.actaastro.2019.01.040.
  • Seleznev, R. K. 2021. Investigation of the flow structure in a model scramjet air intake with transverse hydrogen fuel injection into supersonic crossflow. Fluid Dynamics 56 (3):334–42. doi:10.1134/S0015462821030083.
  • Sharma, P., and T. Fang. 2014. Breakup of liquid jets from non-circular orifices. Experiments in Fluids 55:1–17. doi:10.1007/s00348-014-1666-z.
  • Song, Y., D. Hwang, and K. Ahn. 2019. Effect of orifice geometry on column trajectories of liquid jets in crossflows. International Journal of Aeronautical and Space Sciences 20:139–49. doi:10.1007/s42405-018-0130-3.
  • Sun, M., S. Zhang, Y. Zhao, Y. Zhao, and J. Liang. 2013. Experimental investigation on transverse jet penetration into a supersonic turbulent crossflow. Science China Technological Sciences 56:1989–98. doi:10.1007/s11431-013-5265-7.
  • Wang, F., and T. Fang. 2015. Liquid jet breakup for non-circular orifices under low pressures. International Journal of Multiphase Flow 72:248–62. doi:10.1016/j.ijmultiphaseflow.2015.02.015.
  • Winklhofer, E., E. Kull, E. Kelz, and A. Morozov. 2001. Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. Proceedings of the ILASS-Europe conference, Zurich.
  • Wu, L., Z.-G. Wang, L. Qinglian, and L. Chun. 2016. Study on transient structure characteristics of round liquid jet in supersonic crossflows. Journal of Visualization 19:337–41. doi:10.1007/s12650-015-0328-4.
  • Xiao, F., Z. G. Wang, M. B. Sun, J. H. Liang, and N. Liu. 2016. Large eddy simulation of liquid jet primary breakup in supersonic air crossflow. International Journal of Multiphase Flow 87:229–40. doi:10.1016/j.ijmultiphaseflow.2016.08.008.
  • Xiao, F., and M.-B. Sun. 2018. Effects of Mach number on liquid jet primary breakup in gas crossflow. Atomization and Sprays 28 (11). doi:10.1615/ATOMIZSPR.2019026846.
  • Yu, S., B. Yin, B. Qinsheng, H. Jia, and C. Chen. 2021. The influence of elliptical and circular orifices on the transverse jet characteristics at supersonic crossflow. Acta Astronautica 185:124–31. doi:10.1016/j.actaastro.2021.04.038.
  • Zhang, D., and W. Song. 2017. Experimental study of cone-struts and cavity flameholders in a kerosene-fueled round scramjet combustor. Acta Astronautica 139:24–33. doi:10.1016/j.actaastro.2017.06.025.
  • Zhang, J., J. Chang, F. Quan, L. Bian, and W. Bao. 2019. Ignition characteristics in a thin strut-equipped dual mode combustor fueled with liquid kerosene. Acta Astronautica 161:125–38. doi:10.1016/j.actaastro.2019.05.013.
  • Zhang, Z., S. F. McCreton, M. Awasthi, A. O. Wills, D. J. Moreau, and C. J. Doolan. 2021. The flow features of transverse jets in supersonic crossflow. Aerospace Science and Technology 118:107058. doi:10.1016/j.ast.2021.107058.
  • Zhou, Y.-Z., F. Xiao, L. Qing-Lian, and L. Chen-Yang. 2020. Simulation of elliptical liquid jet primary breakup in supersonic crossflow. International Journal of Aerospace Engineering 2020:1–12. doi:10.1155/2020/6783038.
  • Zhu, Y. H., F. Xiao, Q. L. Li, R. Mo, C. Li, and S. Lin. 2019. LES of primary breakup of pulsed liquid jet in supersonic crossflow. Acta Astronautica 154:119–32. doi:10.1016/j.actaastro.2018.10.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.