26
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Offshore wind power output prediction based on convolutional attention mechanism

, , , , , ORCID Icon & show all
Pages 13041-13056 | Received 26 Jun 2023, Accepted 24 Oct 2023, Published online: 17 Nov 2023

References

  • Alamgir Hossain, M., R. K. Chakrabortty, S. Elsawah, and M. J. Ryan. 2021. Very short-term forecasting of wind power generation using hybrid deep learning model. Journal of Cleaner Production 296:126564. doi:10.1016/j.jclepro.2021.126564.
  • Arora, P., S. Mohammad Jafar Jalali, S. Ahmadian, B. Ketan Panigrahi, P. Suganthan, and A. Khosravi. 2023. Probabilistic wind power forecasting using optimized deep auto-regressive recurrent neural networks. IEEE Transactions on Industrial Informatics 19 (3):2814–25. doi:10.1109/TII.2022.3160696.
  • Barasa, M., L. Xuemin, Y. Zhang, and X. Weiming. 2022. The balance effects of momentum deficit and thrust in cumulative wake models. Energy 246:123399. doi:10.1016/j.energy.2022.123399.
  • Chen, C.-J., L. Yuan-Shuo, C.-Y. Tai, Y.-C. Chen, and Y.-M. Huang. 2020. Pest incidence forecasting based on internet of things and long short-term memory network. Applied Soft Computing 124:108895. doi:10.1016/j.asoc.2022.108895.
  • Chen, Y., Y. Wang, Z. Dong, S. Jie, Z. Han, D. Zhou, Y. Zhao, and Y. Bao. 2021. 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model. Energy Conversion and Management 244:114451. doi:10.1016/j.enconman.2021.114451.
  • Dai, Y., Y. Wang, M. Leng, X. Yang, and Q. Zhou. 2022. LOWESS smoothing and random forest based GRU model: A short-term photovoltaic power generation forecasting method. Energy 256:124661. doi:10.1016/j.energy.2022.124661.
  • Deveci, M., N. Erdogan, U. Cali, J. Stekli, and S. Zhong. 2021. Type-2 neutrosophic number based multi-attributive border approximation area comparison (mabac) approach for offshore wind farm site selection in USA. Engineering Applications of Artificial Intelligence 103:104311. doi:10.1016/j.engappai.2021.104311.
  • Dokur, E., N. Erdogan, M. Ebrahimi Salari, C. Karakuzu, and J. Murphy. 2022. Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine. Energy 248:123595. doi:10.1016/j.energy.2022.123595.
  • Dong, M., M. Sun, D. Song, L. Huang, J. Yang, and Y. Hoon Joo. 2022. Real-time detection of wind power abnormal data based on semi-supervised learning robust random cut forest. Energy 257:124761. doi:10.1016/j.energy.2022.124761.
  • Farah, S., A. Wood David, N. Humaira, Z. Aneela, and E. Steffen. 2022. Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning. Renewable and Sustainable Energy Reviews 167:112700. doi:10.1016/j.rser.2022.112700.
  • Granado, L., M. Ben-Marzouk, E. Solano Saenz, Y. Boukal, and S. Jugé. 2022. Machine learning predictions of lithium-ion battery state-of-health for eVTOL applications. Journal of Power Sources 548:232051. doi:10.1016/j.jpowsour.2022.232051.
  • Guo, N.-Z., K.-Z. Shi, B. Li, Q. Liang-Wen, W. Hong-Hui, Z.-L. Zhang, and X. Jian-Zhong. 2022. A physics-inspired neural network model for short-term wind power prediction considering wake effects. Energy 261:125208. doi:10.1016/j.energy.2022.125208.
  • Han, Q., F. Meng, H. Tao, and F. Chu. 2017. Non-parametric hybrid models for wind speed forecasting. Energy Conversion and Management 148:554–68. doi:10.1016/j.enconman.2017.06.021.
  • Hu, W., Q. Yang, H.-P. Chen, Z. Yuan, L. Chen, S. Shao, and J. Zhang. 2021. New hybrid approach for short-term wind speed predictions based on preprocessing algorithm and optimization theory. Renewable Energy 179:2174–86. doi:10.1016/j.renene.2021.08.044.
  • Joseph, L. P., R. C. Deo, R. Prasad, S. Salcedo-Sanz, N. Raj, and J. Soar. 2023. Near real-time wind speed forecast model with bidirectional LSTM networks. Renewable Energy 204:39–58. doi:10.1016/j.renene.2022.12.123.
  • Kumar, B., N. Y. Sunil, and N. Yadav. 2023. A novel hybrid model combining βSARMA and LSTM for time series forecasting. Applied Soft Computing 134:110019. doi:10.1016/j.asoc.2023.110019.
  • Lang, L., L. Tiancai, and A. Shan. 2021. Tang Xiangyan. An improved random forest algorithm and its application to wind pressure prediction. International Journal of Intelligent Systems 36 (8):4016–32. doi:10.1002/int.22448.
  • Li, J., Z. Song, X. Wang, Y. Wang, and Y. Jia. 2022. A novel offshore wind farm typhoon wind speed prediction model based on PSO–bi-LSTM improved by VMD. Energy 251:123848. doi:10.1016/j.energy.2022.123848.
  • Li, J., G. Yin, X. Wang, and W. Yan. 2022. Automated decision making in highway pavement preventive maintenance based on deep learning. Automation in Construction 135:104111. doi:10.1016/j.autcon.2021.104111.
  • Liang, T., Q. Zhao, L. Qingzhao, and H. Sun. 2021. A novel wind speed prediction strategy based on bi-LSTM, MOOFADA and transfer learning for centralized control centers. Energy 230:120904. doi:10.1016/j.energy.2021.120904.
  • Liu, X., Z. Lin, and Z. Feng. 2021. Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM. Energy 227:120492. doi:10.1016/j.energy.2021.120492.
  • Ma, Y., Y. Lean, and G. Zhang. 2022. Short-term wind power forecasting with an intermittency-trait-driven methodology. Renewable Energy 198:872–83. doi:10.1016/j.renene.2022.08.079.
  • Malhan, P., and M. Mittal. 2022. A novel ensemble model for long-term forecasting of wind and hydro power generation. Energy Conversion and Management 251:114983. doi:10.1016/j.enconman.2021.114983.
  • Mehrjoo, M., M. Jafari Jozani, and M. Pawlak. 2021. Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes. Energy 218:119478. doi:10.1016/j.energy.2020.119478.
  • Niu, Z., Y. Zeyuan, W. Tang, W. Qinghua, and M. Reformat. 2020. Wind power forecasting using attention-based gated recurrent unit network. Energy 196:117081. doi:10.1016/j.energy.2020.117081.
  • Perini de Souza, N. B., E. G. Sperandio Nascimento, A. A. Bandeira Santos, and D. M. Moreira. 2022. Wind mapping using the mesoscale WRF model in a tropical region of Brazil. Energy 240:122491. doi:10.1016/j.energy.2021.122491.
  • Qiao, D., W. Shun, G. Li, J. You, J. Zhang, and B. Shen. 2022. Wind speed forecasting using multi-site collaborative deep learning for complex terrain application in valleys. Renewable Energy 189:231–44. doi:10.1016/j.renene.2022.02.095.
  • Sarkar, N., R. Gupta, P. Kumar Keserwani, and M. Chandra Govil. 2022. Air Quality index prediction using an effective hybrid deep learning model. Environmental Pollution 315:120404. doi:10.1016/j.envpol.2022.120404.
  • Sehar Zaidi, F., H.-L. Dai, M. Imran, and K. Phuc Tran. 2023. Monitoring autocorrelated compositional data vectors using an enhanced residuals hotelling T2 control chart. Computers & Industrial Engineering 181:109280. doi:10.1016/j.cie.2023.109280.
  • Shahid, F., A. Zameer, and M. Muneeb. 2021. A novel genetic LSTM model for wind power forecast. Energy 223:120069. doi:10.1016/j.energy.2021.120069.
  • Sun, Z., M. Zhao, Y. Dong, X. Cao, and H. Sun. 2021. Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales. Energy 221:119848. doi:10.1016/j.energy.2021.119848.
  • Sward, J. A., T. R. Ault, and K. M. Zhang. 2022. Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration. Energy 254:124367. doi:10.1016/j.energy.2022.124367.
  • Wang, C., H. Zhang, and M. Ping. 2020. Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network. Applied Energy 259:114139. doi:10.1016/j.apenergy.2019.114139.
  • Wang, J., L. Zhang, C. Wang, and Z. Liu. 2021. A regional pretraining-classification-selection forecasting system for wind power point forecasting and interval forecasting. Applied Soft Computing 113:107941. doi:10.1016/j.asoc.2021.107941.
  • Wang, K., Q. Xiaoxia, H. Liu, and J. Song. 2018. Deep belief network based k-means cluster approach for short-term wind power forecasting. Energy 165:840–52. doi:10.1016/j.energy.2018.09.118.
  • Wang, Y., X. Houhua, R. Zou, L. Zhang, and F. Zhang. 2022. A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting. Renewable Energy 196:497–517. doi:10.1016/j.renene.2022.07.009.
  • Wang, Y., R. Zou, F. Liu, L. Zhang, and Q. Liu. 2021. A review of wind speed and wind power forecasting with deep neural networks. Applied Energy 304:117766. doi:10.1016/j.apenergy.2021.117766.
  • Wu, F., R. Jing, X.-P. Zhang, F. Wang, and Y. Bao. 2021. A combined method of improved grey BP neural network and MEEMD-ARIMA for day-ahead wave Energy forecast. IEEE Transactions on Sustainable Energy 12 (4):2404–12. doi:10.1109/TSTE.2021.3096554.
  • Xiao, Y., C. Zou, H. Chi, and R. Fang. 2023. Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis. Energy 267:126503. doi:10.1016/j.energy.2022.126503.
  • Xiong, J., T. Peng, Z. Tao, C. Zhang, S. Song, and M. Shahzad Nazir. 2023. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy 266:126419. doi:10.1016/j.energy.2022.126419.
  • Xu, W., P. Liu, L. Cheng, Y. Zhou, Q. Xia, Y. Gong, and Y. Liu. 2021. Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy. Renewable Energy 163:772–82. doi:10.1016/j.renene.2020.09.032.
  • Yin, S., and H. Liu. 2022. Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction. Energy 250:123857. doi:10.1016/j.energy.2022.123857.
  • Yuan, X., Q. Tan, X. Lei, Y. Yuan, and X. Wu. 2017. Yanbin Yuan, Xiaotao Wu. Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine. Energy 129:122–37. doi:10.1016/j.energy.2017.04.094.
  • Yun, E., and J. Hur. 2021. Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources. Energy 223:120000. doi:10.1016/j.energy.2021.120000.
  • Zhang, F., L. Peng-Cheng, L. Gao, Y.-Q. Liu, and X.-Y. Ren. 2021. Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting. Renewable Energy 169:129–43. doi:10.1016/j.renene.2021.01.003.
  • Zucatelli, P. J., E. G. S. Nascimento, A. Á. B. Santos, A. M. G. Arce, and D. M. Moreira. 2021. An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay. Energy 230:120842. doi:10.1016/j.energy.2021.120842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.