26
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The impact of various catalysts on pyrolysis bio-oil characteristics and catalyst coking behavior of corn stover

, , , , , & ORCID Icon show all
Pages 12666-12679 | Received 23 May 2023, Accepted 01 Sep 2023, Published online: 16 Nov 2023

References

  • Chen, X., Y. Chen, H. Yang, W. Chen, X. Wang, and H. Chen. 2017. Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresource Technology 233:15–20. doi:10.1016/j.biortech.2017.02.070.
  • Chen, X., Y. Chen, H. Yang, X. Wang, Q. Che, W. Chen, and H. Chen. 2019. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil. Bioresource Technology 273:153–58. doi:10.1016/j.biortech.2018.11.008.
  • Chu, R., B. Yang, Y. Zhou, J. Wu, P. Li, M. Dai, X. Meng, X. Li, W. Li, G. Wu, et al. 2023. Effect of different SAPO-34 film thickness on coke resistance performance of SAPO-34/ZSM-5/Quartz film in MTA reaction. Journal of the Taiwan Institute of Chemical Engineers 145:104819. doi:10.1016/j.jtice.2023.104819.
  • Fernández, A. L., M. Granda, J. Bermejo, and R. Menéndez. 1999. Catalytic polymerization of anthracene oil with aluminium trichloride. Carbon 37 (8):1247–55. doi:10.1016/S0008-6223(98)00321-2.
  • Guisnet, M., and P. Magnoux. 1994. Fundamental Description of deactivation and regeneration of acid zeolites. In Studies in surface science and catalysis, B. Delmon and G. F. Froment, ed., Vol. 88. 53–68. Amsterdam: Elsevier.
  • Guisnet, M., and P. Magnoux. 2001. Organic Chemistry of coke formation. Applied Catalysis A: General 212 (1):83–96. doi:10.1016/S0926-860X(00)00845-0.
  • He, S., H. R. Goldhoorn, Z. Tegudeer, A. Chandel, A. Heeres, M. C. A. Stuart, and H. Jan Heeres. 2022. A time- and space-resolved catalyst deactivation study on the conversion of glycerol to aromatics using H-ZSM-5. Chemical Engineering Journal 434:134620. doi:10.1016/j.cej.2022.134620.
  • Hu, Z., L. Zhu, H. Cai, M. Huang, J. Li, B. Cai, D. Chen, L. Zhu, Y. Yang, and Z. Ma. 2023. Enhancement of the production of bio-aromatics from bamboo pyrolysis: Wet torrefaction pretreatment coupled with catalytic fast pyrolysis. Journal of Analytical and Applied Pyrolysis 169:105818. doi:10.1016/j.jaap.2022.105818.
  • Idoia, H., H. O. Mohamed, Y. Attada, N. Zambrano, W. Zhang, A. Ramírez, and P. Castaño. 2023. Direct analysis at temporal and molecular level of deactivating coke species formed on zeolite catalysts with diverse pore topologies. Catalysis Science & Technology 13 (5):1288–300. doi:10.1039/d2cy01850k.
  • Ku, S., and S. P. Mun. 2006. Characterization of pyrolysis tar derived from lignocellulosic biomass. Journal of Industrial and Engineering Chemistry 12:853–61.
  • Li, Y., S. M. Shaheen, J. Rinklebe, N. L. Ma, Y. Yang, M. A. Ashraf, X. Chen, and W. Peng. 2021. Pyrolysis of Aesculus Chinensis Bunge seed with Fe2O3/NiO as nanocatalysts for the production of bio-oil material. Journal of Hazardous Materials 416:126012. doi:10.1016/j.jhazmat.2021.126012.
  • Li, P., B. Wang, J. Xu, X. Wang, J. Hu, J. Song, J. Bai, and C. Chang. 2023. Research progress on carbon deposition of catalysts for biomass pyrolysis. Chemical Industry & Engineering Progress 42 (1):236–46. doi:10.16085/j.issn.1000-6613.2022-0511.
  • López, A., I. de Marco, B. M. Caballero, M. F. Laresgoiti, A. Adrados, and A. Aranzabal. 2011. Catalytic pyrolysis of Plastic Wastes with two different types of catalysts: ZSM-5 zeolite and red mud. Applied Catalysis B: Environmental 104 (3):211–19. doi:10.1016/j.apcatb.2011.03.030.
  • Nolte, M. W., and B. H. Shanks. 2017. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis. Energy Technology 5 (1):7–18. doi:10.1002/ente.201600096.
  • Ochoa, A., J. Bilbao, A. G. Gayubo, and P. Castaño. 2020. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renewable and Sustainable Energy Reviews 119:109600. doi:10.1016/j.rser.2019.109600.
  • Stanton, A. R., K. Iisa, C. Mukarakate, and M. R. Nimlos. 2018. Role of biopolymers in the deactivation of ZSM-5 during catalytic fast pyrolysis of biomass. ACS Sustainable Chemistry & Engineering 6 (8):10030–38. doi:10.1021/acssuschemeng.8b01333.
  • Taarning, E., C. M. Osmundsen, X. Yang, B. Voss, S. I. Andersen, and C. H. Christensen. 2011. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science 4 (3):793–804. doi:10.1039/C004518G.
  • Vuppaladadiyam, A. K., S. S. V. Vuppaladadiyam, V. S. Sikarwar, E. Ahmad, K. K. Pant, M. S, A. Pandey, S. Bhattacharya, A. Sarmah, and S. Leu. 2023. A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute 108:101236. doi:10.1016/j.joei.2023.101236.
  • Wang, S., G. Dai, H. Yang, and Z. Luo. 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62:33–86. doi:10.1016/j.pecs.2017.05.004.
  • Wang, S., Z. Li, X. Bai, W. Yi, and P. Fu. 2018. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production. Journal of Analytical and Applied Pyrolysis 136:8–17. doi:10.1016/j.jaap.2018.10.024.
  • Wang, L., B. Si, X. Han, W. Yi, Z. Li, and A. Zhang. 2022. Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis. Industrial Crops and Products 184:114973. doi:10.1016/j.indcrop.2022.114973.
  • Wang, D., R. Xiao, H. Zhang, and G. He. 2010. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis 89 (2):171–77. doi:10.1016/j.jaap.2010.07.008.
  • Wang, Q., X. Zhang, S. Sun, Z. Wang, and D. Cui. 2020. Effect of CaO on pyrolysis products and reaction mechanisms of a corn stover. ACS Omega 5 (18):10276–87. doi:10.1021/acsomega.9b03945.
  • Wu, Q., L. Ke, Y. Wang, N. Zhou, H. Li, Q. Yang, J. Xu, L. Dai, R. Zou, Y. Liu, et al. 2022. Pulse pyrolysis of Waste Cooking oil over CaO: Exploration of catalyst deactivation pathway based on feedstock characteristics. Applied Catalysis B: Environmental 304:120968. doi:10.1016/j.apcatb.2021.120968.
  • Wu, Q., Y. Wang, L. Jiang, Q. Yang, L. Ke, Y. Peng, S. Yang, L. Dai, Y. Liu, and R. Ruan. 2020. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of Soapstock and Straw in a downdraft reactor. Bioresource Technology 299:122611. doi:10.1016/j.biortech.2019.122611.
  • Xie, Q., P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, P. Chen, et al. 2014. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource Technology 172:162–68. doi:10.1016/j.biortech.2014.09.006.
  • Xue, X., Y. Liu, L. Wu, X. Pan, J. Liang, and Y. Sun. 2019. Catalytic fast pyrolysis of Maize Straw with a core–shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresource Technology 289:121691. doi:10.1016/j.biortech.2019.121691.
  • Xue, P., M. Liu, H. Yang, H. Zhang, Y. Chen, Q. Hu, S. Zhang, and H. Chen. 2023. Mechanism study on pyrolysis interaction between cellulose, hemicellulose, and lignin Based on Photoionization time-of-Flight mass Spectrometer (PI-TOF-MS) analysis. Fuel 338:127276. doi:10.1016/j.fuel.2022.127276.
  • Yang, X., J. Zhang, J. Zheng, Z. Liu, J. Liu, S. Li, Y. Ye, W. Xie, J. Fan, H. Lan, et al. 2023. In-situ and ex-situ catalytic pyrolysis of cellulose to produce furans over red mud-supported transition metal catalysts. Journal of Analytical and Applied Pyrolysis 169:105830. doi:10.1016/j.jaap.2022.105830.
  • Yi, L., H. Liu, M. Li, G. Man, and H. Yao. 2020. Prevention of CaO deactivation using organic calcium precursor during multicyclic catalytic upgrading of bio-oil. Fuel 271:117692. doi:10.1016/j.fuel.2020.117692.
  • Zhang, H., S. Shao, R. Xiao, D. Shen, and J. Zeng. 2014. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates. Energy & Fuels 28 (1):52–57. doi:10.1021/ef401458y.
  • Zhao, Y., S. Yuan, Y. Zhou, X. Xie, and J. Deng. 2023. Study on the regeneration characteristics of fe-ni-Ca/Al2O3 catalyst in the reforming process of biomass pyrolysis volatiles. Journal of Analytical and Applied Pyrolysis 173:106041. doi:10.1016/j.jaap.2023.106041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.