69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Emulsion-assisted polyaniline grown on molybdenum diselenide nanoflowers for efficient counter electrode application in dye-sensitized solar cells

, &
Pages 12880-12898 | Received 07 Jun 2023, Accepted 19 Oct 2023, Published online: 13 Nov 2023

References

  • Anantharaj, S., and P. S. N. 2020. Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectrochem 7:2297–308. doi:10.1002/celc.202000515.
  • Azadbakht, A., and A. R. Abbasi. 2019. Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe2 nanoflowers and gold nanoparticles as signal amplifiers. Microchimica Acta 186 (1):6–15. doi:10.1007/s00604-018-3130-x.
  • Bandgar, D. K., G. D. Khuspe, R. C. Pawar, C. S. Lee, and V. B. Patil. 2014. Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films. Applied Nanoscience 4 (1):27–36. doi:10.1007/s13204-012-0175-8.
  • Barkoula, N. M., B. Alcock, N. O. Cabrera, and T. Peijs. 2008. Flame-retardancy properties of intumescent ammonium poly(Phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers & Polymer Composites 16 (2):101–13. doi:10.1177/096739110801600203.
  • Bhanvase, B. A., and S. H. Sonawane. 2014. Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: A review. Chemical Engineering and Processing: Process Intensification 85:86–107. doi:10.1016/j.cep.2014.08.007.
  • Bi, E., H. Chen, X. Yang, F. Ye, M. Yin, and L. Han. 2015. Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications. Scientific Reports 5 (1):1–10. doi:10.1038/srep13214.
  • Bocchini, S., A. Chiolerio, S. Porro, D. Accardo, N. Garino, K. Bejtka, D. Perrone, and C. F. Pirri. 2013. Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. Journal of Materials Chemistry C 1 (33):5101–09. doi:10.1039/c3tc30764f.
  • Chen, T., P. J. Colver, and S. A. F. Bon. 2007. Organic–inorganic hybrid hollow spheres prepared from TiO2-stabilized pickering emulsion polymerization. Advanced Materials (Deerfield Beach, Fla) 19 (17):2286–89. doi:10.1002/adma.200602447.
  • Chu, H., X. Liu, B. Liu, G. Zhu, W. Lei, H. Du, J. Liu, J. Li, C. Li, C. Sun et al. 2016. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction. Scientific Reports. 6(1):2–11. doi:10.1038/srep35304.
  • Crowley, K., M. R. Smyth, A. J. Killard, and A. Morrin. 2013. Printing polyaniline for sensor applications. Chemical Papers 67 (8):771–80. doi:10.2478/s11696-012-0301-9.
  • Do Nascimento, G. M., and M. L. A. T. 2007. Studies on the resonance Raman spectra of polyanilineobtained with near-IR excitation. Journal of Raman Spectroscopy: JRS 39 (7):772–78. doi:10.1002/jrs.1841.
  • Dyab, A. K. F., H. A. Al-Lohedan, H. A. Essawy, A. I. A. Abd El-Mageed, and F. Taha. 2014. Fabrication of core/shell hybrid organic–inorganic polymer microspheres via Pickering emulsion polymerization using laponite nanoparticles. Journal of Saudi Chemical Society 18 (5):610–17. doi:10.1016/j.jscs.2011.12.008.
  • Ginic-Markovic, M., J. G. Matisons, R. Cervini, G. P. Simon, and P. M. Fredericks. 2006. Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chemistry of Materials: A Publication of the American Chemical Society 18 (26):6258–65. doi:10.1021/cm061344c.
  • Guo, J., Y. C. Yantao Shi, T. M, and T. Ma. 2013. Highly efficient telluride electrocatalysts for use as pt-free counter electrodes in dye-sensitized solar cells. Chemical Communications 49 (86):10157–59. doi:10.1039/c3cc45698f.
  • Gupta, K., P. C. Jana, and A. K. Meikap. 2010. Optical and electrical transport properties of polyaniline–silver nanocomposite. Synthetic Metals 160 (13–14):1566–73. doi:10.1016/j.synthmet.2010.05.026.
  • He, B., X. Zhang, H. Zhang, J. Li, Q. Meng, and Q. Tang. 2017. Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells. Solar Energy 147:470–78. doi:10.1016/j.solener.2017.03.059.
  • Karami, H., and M. Fazlollah. 2003. Short communication a new design for dry polyaniline rechargeable batteries. Journal of Power Sources 117 (1–2):255–59. doi:10.1016/S0378-7753(03)00168-X.
  • Kim, Y. G., W. Wichaita, and H. Thérien-Aubin. 2020. Influence of the architecture of soft polymer-functionalized polymer nanoparticles on their dynamics in suspension. Polymers 12 (8):1844. doi:10.3390/polym12081844.
  • Li, H., X. Hao, H. Gong, Z. Jin, and T. Zhao. 2021. Efficient hydrogen production at a rationally designed MoSe2@Co3O4 p-n heterojunction. Journal of Colloid and Interface Science 586:84–94. doi:10.1016/j.jcis.2020.10.072.
  • Li, X., M. Lu, S. Ai, Y. Xiao, C. Zhu, and Z. Ai. 2015. Morphology and kinetic mechanism of facile one-step preparing TiO 2 /polyacrylate/TiO 2 multilayer core–shell hybrid emulsion via miniemulsion polymerization. Journal of Adhesion Science and Technology 29 (19):2049–64. doi:10.1080/01694243.2015.1050758.
  • Li, Q., J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, and L. Fan. 2008. Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications 10 (9):1299–302. doi:10.1016/j.elecom.2008.06.029.
  • Lovell, P. A., and F. J. Schork. 2020. Fundamentals of emulsion polymerization. Biomacromolecules 21 (11):4396–441. doi:10.1021/acs.biomac.0c00769.
  • M, K. M. 2023. Effect of ionic liquids on the performance of dye-sensitized solar cells using poly(vinyl alcohol)/polypyrrole based polymer electrolytes. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (1):2027–43. doi:10.1080/15567036.2023.2184433.
  • Mahato, N., N. Parveen, and M. H. Cho. 2015. Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Materials Letters 161:372–74. doi:10.1016/j.matlet.2015.08.138.
  • Mittal, H., and M. Khanuja. 2020. Interfacial charge carrier dynamics of the MoSe2-conducting polymer (MoSe2-PANI) heterojunction. Materials Today: Proceedings 28:314–16. doi:10.1016/j.matpr.2020.02.156.
  • Mittal, H., A. Kumar, and M. Khanuja. 2019. In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. Journal of Saudi Chemical Society 23 (7):836–45. doi:10.1016/j.jscs.2019.02.004.
  • Mostafaei, A., and A. Zolriasatein. 2012. Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International 22 (4):273–80. doi:10.1016/j.pnsc.2012.07.002.
  • Nam, D., J. U. Lee, and H. Cheong. 2015. Excitation energy dependent Raman spectrum of MoSe2. Scientific Reports 5 (1):1–6. doi:10.1038/srep17113.
  • Österholm, J. E., Y. Cao, F. Klavetter, and P. Smith. 1993. Emulsion polymerization of aniline. Synthetic Metals 55 (2–3):1034–39. doi:10.1016/0379-6779(93)90195-3.
  • Pataniya, P. M., V. Patel, and C. K. Sumesh. 2021. Electrophoretic Deposition of MoSe 2 –MoO x nanosheets for enhanced electrocatalytic hydrogen evolution reaction. ACS Applied Energy Materials 4 (8):7891–99. doi:10.1021/acsaem.1c01239.
  • Sajedi-Moghaddam, A., C. C. Mayorga-Martinez, E. Saievar-Iranizad, Z. Sofer, and M. Pumera. 2019. Exfoliated transition metal dichalcogenide (MX2; M = Mo, W; X = S, Se, te) nanosheets and their composites with polyaniline nanofibers for electrochemical capacitors. Applied Materials Today 16:280–89. doi:10.1016/j.apmt.2019.06.002.
  • Setayeshgar, S., M. Karimipour, M. Molaei, M. R. Moghadam, and S. Khazraei. 2020. Synthesis of scalable 1T/2H–MoSe2 nanosheets with a new source of Se in basic media and study of their HER activity. International Journal of Hydrogen Energy 45 (11):6090–101. doi:10.1016/j.ijhydene.2019.12.102.
  • Shi, Y., C. Hua, B. Li, X. Fang, C. Yao, Y. Zhang, Y.-S. Hu, Z. Wang, L. Chen, D. Zhao et al. 2013. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Advanced Functional Materials. 23(14):1832–38. doi:10.1002/adfm.201202144.
  • Sowbakkiyavathi, E. S., V. Murugadoss, R. Sittaramane, and S. Angaiah. 2020. Development of MoSe2/PANI composite nanofibers as an alternative to pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. Journal of Solid State Electrochemistry: Current Research and Development in Science and Technology 24 (10):2289–300. doi:10.1007/s10008-020-04728-6.
  • Tang, H., K. Dou, C. C. Kaun, Q. Kuang, and S. Yang. 2014. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. Journal of Materials Chemistry A 2 (2):360–64. doi:10.1039/C3TA13584E.
  • Tian, W., B. Xi, Z. Feng, H. Li, J. Feng, and S. Xiong. 2019. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Advanced Energy Materials 9 (36):1–10. doi:10.1002/aenm.201901896.
  • V, K. T., and S. L. Belagali. 2015. Characterization of polyaniline for optical and electrical properties. IOSR Journal of Applied Chemistry 8 (01):53–56. doi:10.9790/5736-0801025356.
  • Xiang, J., and L. T. Drzal. 2012. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 53 (19):4202–10. doi:10.1016/j.polymer.2012.07.029.
  • Xiao, W., D. Bukhvalov, Z. Zou, L. Zhang, Z. Lin, and X. Yang. 2019. Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe2 nanosheets for the hydrogen evolution reaction: A combined experimental and theoretical study. ChemSuschem 12 (22):5015–22. doi:10.1002/cssc.201902149.
  • Xu, H., R. Bissessur, and D. C. Dahn. 2014. Nanomaterials based on polyanilines and MoSe2. Journal of Inorganic and Organometallic Polymers and Materials 24 (1):219–25. doi:10.1007/s10904-013-9981-z.
  • Yan, Y., G. Yang, J.-L. Xu, M. Zhang, C.-C. Kuo, and S.-D. Wang. 2020. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Science and Technology of Advanced Materials 21 (1):768–86. doi:10.1080/14686996.2020.1820845.
  • Yi, J., H. Li, Y. Gong, X. She, Y. Song, Y. Xu, J. Deng, S. Yuan, H. Xu, H. Li, et al. 2019. Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental 243:330–36. doi:10.1016/j.apcatb.2018.10.054.
  • Yu, D. G., and J. H. An. 2004. Preparation and characterization of titanium dioxide core and polymer shell hybrid composite particles prepared by two-step dispersion polymerization. Polymer 45 (14):4761–68. doi:10.1016/j.polymer.2004.01.039.
  • Yuan, X., B. Zhou, X. Zhang, Y. Li, and L. Liu. 2018. Hierarchical MoSe2 nanoflowers used as highly efficient electrode for dye-sensitized solar cells. Electrochimica acta 283:1163–69. doi:10.1016/j.electacta.2018.06.092.
  • Yu, C., Z. Cao, S. Chen, S. Wang, and H. Zhong. 2020. Promoting the hydrogen evolution performance of 1T-MoSe2-Se: Optimizing the two-dimensional structure of MoSe2 by layered double hydroxide limited growth. Applied Surface Science 509:145364. doi:10.1016/j.apsusc.2020.145364.
  • Zhang, Y., Q. Gong, L. Li, H. Yang, Y. Li, and Q. Wang. 2015. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research 8 (4):1108–15. doi:10.1007/s12274-014-0590-0.
  • Zhang, J., L. Wang, C. Jiang, B. Cheng, T. Chen, and J. Yu. 2021. CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells. Advancement of Science 8 (21):1–11. doi:10.1002/advs.202102648.
  • Zhao, X., Zhao, Y., Huang, B., Cai, W., Sui, J., Yang, Z., and Wang, H. E. 2020. MoSe2 nanoplatelets with enriched active edge sites for superior sodium-ion storage and enhanced alkaline hydrogen evolution activity. Chemical Engineering Journal 382:123047. doi:10.1016/j.cej.2019.123047.
  • Zhou, Q., Dawei, W., Yue, L., Shuangyue, H., Chaolei, B., Zhifeng, W., Jing, Z., and Huaihao, Z. 2020. Rechargeable aluminum-ion battery with sheet-like MoSe2@C nanocomposites cathode. Electrochimica acta 354:136677. doi:10.1016/j.electacta.2020.136677.
  • Zhou, K., Liu, J., Wang, B., Zhang, Q., Shi, Y., Jiang, S., Hu, Y., and Gui, Z. 2014. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters 126:159–61. doi:10.1016/j.matlet.2014.04.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.