214
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Transition metal molybdenum (tungsten) carbide as catalysts for dry reforming of methane: A mini-review

&
Pages 578-593 | Received 27 Feb 2023, Accepted 14 Nov 2023, Published online: 30 Nov 2023

References

  • Akri, M., S. Zhao, X. Li, K. Zang, A. F. Lee, M. A. Isaacs, W. Xi, Y. Gangarajula, J. Luo, Y. Ren, et al. 2019. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nature Communications 10(1):5181. doi:10.1038/s41467-019-12843-w.
  • Alexander, A. M., and J. S. Hargreaves. 2010. Alternative catalytic materials: Carbides, nitrides, phosphides and amorphous boron alloys. Chemical Society Reviews 39 (11):4388–401. doi:10.1039/b916787k.
  • Al-Fatesh, A. S., Y. Arafat, S. O. Kasim, A. A. Ibrahim, A. E. Abasaeed, and A. H. Fakeeha. 2020. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental 280:119445. doi:10.1016/j.apcatb.2020.119445.
  • Al-Fatesh, A., A. Fakeeha, A. Ibrahim, and A. E. Abasaeed. 2020. Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. International Journal of Hydrogen Energy 46 (5):3780–88. doi:10.1016/j.ijhydene.2020.10.164.
  • Aramouni, N. A. K., J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad. 2018. Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews 82:2570–85. doi:10.1016/j.rser.2017.09.076.
  • Baena-Moreno, F. M., M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L. F. Vilches Arenas, and B. Navarrete. 2018. Carbon capture and utilization technologies: A literature review and recent advances. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 41 (12):1403–33. doi:10.1080/15567036.2018.1548518.
  • Barama, S., C. Dupeyrat-Batiot, M. Capron, E. Bordes-Richard, and O. Bakhti-Mohammedi. 2009. Catalytic properties of Rh, Ni, Pd and Ce-supported on al-pillared montmorillonites in dry reforming of methane. Catalysis Today 141 (3–4):385–92. doi:10.1016/j.cattod.2008.06.025.
  • Barbosa, R. D., M. A. S. Baldanza, N. S. De Resende, F. B. Passos, and V. L. D. S. T. da Silva. 2020. Nickel–promoted molybdenum or tungsten carbides as catalysts in dry reforming of methane: Effects of variation in CH4/CO2 molar ratio. Catalysis Letters 151 (6):1578–91. doi:10.1007/s10562-020-03420-8.
  • Brungs, A. J., A. York, J. B. Claridge, C. Márquez-Alvarez, and M. L. H. Green. 2000. Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts. Catalysis Letters 70 (3–4):117–22. doi:10.1023/A:1018829116093.
  • Brungs, A. J., A. P. E. York, and M. L. H. Green. 1999. Comparison of the group Ⅴ and Ⅵ transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities. Catalysis Letters 57 (1–2):65–69. doi:10.1023/A:1019062608228.
  • Chen, J. G. 1996. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chemical Reviews 96 (4):1477–98. doi:10.1021/cr950232u.
  • Chen, W. F., C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic. 2013. Highly active, durable, and nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy & Environmental Science 6 (3):943. doi:10.1039/c2ee23891h.
  • Claridge, J., A. P. E. York, A. J. Brungs, Marquez-Alvarez, C., Sloan, J., Tsang, S. C., and Green, M. L. H. 1998. New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide. Journal of Catalysis 180 (1):85–100. doi:10.1006/jcat.1998.2260.
  • Darujati, A. R. S., D. C. LaMont, and W. J. Thomson. 2003. Oxidation stability of Mo2C catalysts under fuel reforming conditions. Applied Catalysis A: General 253 (2):397–407. doi:10.1016/S0926-860X(03)00531-3.
  • Darujati, A. R. S., and W. J. Thomson. 2005. Stability of supported and promoted-molybdenum carbide catalysts in dry-methane reforming. Applied Catalysis A: General 296 (2):139–47. doi:10.1016/j.apcata.2005.07.057.
  • Deng, Y., Y. Ge, M. Xu, Q. Yu, D. Xiao, S. Yao, and D. Ma. 2019. Molybdenum carbide: Controlling the geometric and electronic structure of noble metals for the activation of O–H and C–H bonds. Accounts of Chemical Research 52 (12):3372–83. doi:10.1021/acs.accounts.9b00182.
  • Djaidja, A., S. Libs, A. Kiennemann, and Barama, A. 2006. Characterization and activity in dry reforming of methane on NiMg/al and Ni/MgO catalysts. Catalysis Today 113 (3–4):194–200. doi:10.1016/j.cattod.2005.11.066.
  • Djinovi, P., J. Batista, and A. Pintar. 2012. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. International Journal of Hydrogen Energy 37 (3):2699–707. doi:10.1016/j.ijhydene.2011.10.107.
  • Duan, Y., R. Shang, X. Zhong, W. Xie, X. Wang, and L. Huang. 2016. In-situ synthesis of NiMo2C/Al2O3 catalysts for dry reforming of methane. International Journal of Hydrogen Energy 41 (47):21955–64. doi:10.1016/j.ijhydene.2016.10.006.
  • Fidalgo, B., and J. Menéndez. 2011. Carbon materials as catalysts for decomposition and CO2 reforming of methane: A review. Chinese Journal of Catalysis 32 (1–2):207–16. doi:10.1016/S1872-2067(10)60166-0.
  • Gao, H., Z. Yao, Y. Shi, Jia, R., Liang, F., Sun, Y., Mao, W., and Wang, H. 2018b. Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane. Inorganic Chemistry Frontiers 5 (1):90–99. doi:10.1039/C7QI00532F.
  • Gao, H., Z. Yao, Y. Shi, Wang, S., Gao, H., Yao, Z., Shi, Y., Jia, R., Liang, F., Sun, Y., et al. 2018a. Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catalysis Science & Technology 8 (3):697–701. doi:10.1039/C7CY02506H.
  • Jing, Q., J. Zhu, X. Wei, Lin, Y., Wang, X., and Wu, Z. 2021. An acid-base molecular assembly strategy toward N-doped Mo2C@C nanowires with mesoporous Mo2C cores and ultrathin carbon shells for efficient hydrogen evolution. Journal of Colloid and Interface Science 602 (15):520–33. doi:10.1016/j.jcis.2021.06.022.
  • Johansson, L. I. 1995. Electronic and structural properties of transition-metal carbide and nitride surfaces. Surface Science Reports 21 (5–6):177–250. doi:10.1016/0167-5729(94)00005-0.
  • Khavarian, M., S. P. Chai, and A. R. Mohamed. 2014. Direct use of as-synthesized multi-walled carbon nanotubes for carbon dioxide reforming of methane for producing synthesis gas. Chemical Engineering Journal 257 (6):200–08. doi:10.1016/j.cej.2014.05.079.
  • Kurlov, A., E. B. Deeva, P. M. Abdala, Lebedev, D., Tsoukalou, A., Comas-Vives, A., Fedorov, A., and Müller, C. R. 2020. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nature Communications 11 (1):4920. doi:10.1038/s41467-020-18721-0.
  • Lee, J. S., M. H. Yeom, K. Y. Park, Nam, I. -S., Chung, J. S., Kim, Y. G., and Moon, S. H. 1991. Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. Journal of Catalysis 128 (1):126–36. doi:10.1016/0021-9517(91)90072-C.
  • Leo, V., and M. Boudart. 1985. Compounds of molybdenum and tungsten with high specific surface area: II. Carbides. Journal of Solid State Chemistry 59 (3):348–56. doi:10.1016/0022-4596(85)90302-0.
  • Levy, R. B., and M. Boudart. 1973. Platinum-like behavior of tungsten carbide in surface catalysis. Science 181 (4099):547–49. doi:10.1126/science.181.4099.547.
  • Li, R., A. Shahbazi, L. Wang, Zhang, B., Chung, C. -C., Dayton, D., and Yan, Q. 2018. Nanostructured molybdenum carbide on biochar for CO2 reforming of CH4. Fuel 225:403–10. doi:10.1016/j.fuel.2018.03.179.
  • Li, S., J. Wang, G. Zhang, Liu, J., Lv, Y., and Zhang, Y. 2022. Highly stable activity of cobalt based catalysts with tungsten carbide-activated carbon support for dry reforming of methane: Role of tungsten carbide. Fuel 311:122512. doi:10.1016/j.fuel.2021.122512.
  • Li, S., G. Zhang, J. Wang, Liu, J., and Lv, Y. 2021. Enhanced activity of Co catalysts supported on tungsten carbide-activated carbon for CO2 reforming of CH4 to produce syngas. International Journal of Hydrogen Energy 46 (56):28613–25. doi:10.1016/j.ijhydene.2021.06.085.
  • Marquart, W., S. Raseale, G. Prieto, A. Zimina, B. B. Sarma, J.-D. Grunwaldt, M. Claeys, and N. Fischer. 2021. CO2 reduction over Mo2 C-Based catalysts. ACS Catalysis 11 (3):1624–39. doi:10.1021/acscatal.0c05019.
  • Naito, S., M. Tsuji, and T. Miyao. 2002. Mechanistic difference of the CO2 reforming of CH4 over unsupported and zirconia supported molybdenum carbide catalysts. Catalysis Today 77 (3):161–65. doi:10.1016/S0920-5861(02)00242-0.
  • Naito, S., M. Tsuji, Y. Sakamoto, and Miyao T. 2000. Marked difference of catalytic behavior by preparation methods in CH4 reforming with CO2 over Mo2C and WC catalysts. Studies in Surface Science and Catalysis 143:415–23. doi:10.1016/S0167-2991(00)80682-5.
  • Nicolae, S. A., P. Szilágyi, and M. M. Titirici. 2020. Soft templating production of porous carbon adsorbents for CO2 and H2S capture. Carbon 169:193–204. doi:10.1016/j.carbon.2020.07.064.
  • Oyama, S. T. 1992a. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today 15 (2):179–200. doi:10.1016/0920-5861(92)80175-M.
  • Oyama, S. T. 1992b. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today 15 (2):179–200. doi:10.1016/0920-5861(92)80175-M.
  • Pakhare, D., and J. Spivey. 2014. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews 43 (22):7813. doi:10.1039/C3CS60395D.
  • Pang, J., J. Sun, M. Zheng, Li, H., Wang, Y., and Zhang, T. 2019. Transition metal carbide catalysts for biomass conversion: A review. Applied Catalysis B: Environmental 254:510–22. doi:10.1016/j.apcatb.2019.05.034.
  • Porosoff, M., X. Yang, J. A. Boscoboinik, and Chen, J. G. 2014. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angewandte Chemie International Edition 53 (26):6705–09. doi:10.1002/anie.201404109.
  • Posada-Perez, S., F. Vines, P. J. Ramirez, A. B. Vidal, J. A. Rodriguez, and F. Illas. 2014. The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2 C(001) surfaces. Physical Chemistry Chemical Physics 16 (28):14912–21. doi:10.1039/C4CP01943A.
  • Rezaei, M., S. M. Alavi, S. Sahebdelfar, and Yan, Z. -F. 2006. Syngas production by methane reforming with carbon dioxide on noble metal catalysts. Journal of Natural Gas Chemistry 15 (4):327–34. doi:10.1016/S1003-9953(07)60014-0.
  • Sajjadi, S. M., and M. Haghighi. 2019. Influence of tungsten loading on CO2/O2 reforming of methane over Co-W-promoted Nio-Al2O3 nanocatalyst designed by sol-gel-plasma. International Journal of Energy Research 43 (2):853–73. doi:10.1002/er.4316.
  • Shi, C., S. Zhang, X. Li, Zhang, A., Shi, M., Zhu, Y., Qiu, J., and Au, C. 2014. Synergism in NiMoOx precursors essential for CH4/CO2 dry reforming. Catalysis Today 233:46–52. doi:10.1016/j.cattod.2013.10.076.
  • Shi, C., A. Zhang, X. Li, Zhu, A., Ma, Y., and Au, C. 2012. Ni-modified Mo2C catalysts for methane dry reforming. Applied Catalysis A: General 431-432:164–70. doi:10.1016/j.apcata.2012.04.035.
  • Silva, C. G., F. B. Passos, and V. T. Da Silva. 2019. Influence of the support on the activity of a supported nickel-promoted molybdenum carbide catalyst for dry reforming of methane. Journal of Catalysis 375:507–18. doi:10.1016/j.jcat.2019.05.024.
  • Subhasis, D., S. Manideepa, P. Jim, and A. Bordoloi. 2017. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Applied Catalysis A: General 545:113–26. doi:10.1016/j.apcata.2017.07.044.
  • Su, J., C. Fang, M. Yang, Cheng, Y., Wang, Z., Huang, Z., and You, C. 2020. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from D-xylose via hydrothermal method. Journal of Materials Science and Technology 38:183–88. doi:10.1016/j.jmst.2019.03.050.
  • Sun, Y., G. Zhang, Y. Xu, and Zhang, R. 2019. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature. International Journal of Hydrogen Energy 44 (31):16424–35. doi:10.1016/j.ijhydene.2019.04.250.
  • Treacy, D., and J. R. H. Ross. 2004. Carbon dioxide reforming of methane over supported molybdenum carbide catalysts. Studies in Surface Science & Catalysis 49 (2):643–44. doi:10.1016/S0167-2991(04)80050-8.
  • Tsuji, M., T. Miyao, and S. Naito. 2000. Remarkable support effect of ZrO2 upon the CO2 reforming of CH4 over supported molybdenum carbide catalysts. Catalysis Letters 69 (3–4):195–98. doi:10.1023/A:1019038426961.
  • Villa, A., D. Wang, N. Dimitratos, D. Su, V. Trevisan, and L. Prati. 2010. Pd on carbon nanotubes for liquid phase alcohol oxidation. Catalysis Today 150 (1):8–15. doi:10.1016/j.cattod.2009.06.009.
  • Vroulias, D., N. Gkoulemani, C. Papadopoulou, and H. Matralis. 2020. W–modified Ni/Al2O3 catalysts for the dry reforming of methane: Effect of W loading. Catalysis Today 355:704–15. doi:10.1016/j.cattod.2019.05.066.
  • Wang, H., Y. Diao, Z. Gao, K. J. Smith, X. Guo, D. Ma, and C. Shi. 2022. H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development. ACS Catalysis 12 (24):15501–28. doi:10.1021/acscatal.2c04619.
  • Wang, Z., H. Jin, K. Wang, Xie, Y., Ning, J., Tu, Y., Zeng, H, Chen, Y., Liu, H., and Zeng, H. 2019. A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid. Fuel 239:272–81. doi:10.1016/j.fuel.2018.11.002.
  • Wang, S., G. Q. Lu, and G. J. Millar. 1996. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels 10 (4):896–904. doi:10.1021/ef950227t.
  • Wan, W., B. M. Tackett, and J. G. Chen. 2017. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces. Chemical Society Reviews 46 (7):1807–23. doi:10.1039/C6CS00862C.
  • Xiao, T., A. P. E. York, K. S. Coleman, J. B. Claridge, J. Sloan, J. Charnock, and M. L. H. Green. 2001. Effect of carburising agent on the structure of molybdenum carbides. Journal of Materials Chemistry 11 (12):3094–98. doi:10.1039/b104011c.
  • Yang, Y., Y. -A. Lin, X. Yan, F. Chen, Q. Shen, L. Zhang, and N. Yan. 2019. Cooperative atom motion in Ni–cu nanoparticles during the structural Evolution and the implication in the high-temperature catalyst design. ACS Applied Energy Materials 2 (12):8894–902. doi:10.1021/acsaem.9b01923.
  • Yan, Q., Y. Lu, F. To, Li, Y., and Yu, F. 2015. Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Catalysis Science & Technology 5 (6):3270–80. doi:10.1039/C5CY00029G.
  • Yao, Z., J. Jiang, Y. Zhao, Luan, F., Zhu, J., Shi, Y., Gao, H., and Wang, H. 2016. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides. RSC Advances 6 (24):19944–51. doi:10.1039/C5RA24815A.
  • Yao, L., Y. Wang, M. E. Galvez, C. Hu, and P. Da Costa. 2018. Ni–Mo2 C supported on alumina as a substitute for Ni–Mo reduced catalysts supported on alumina material for dry reforming of methane. Comptes Rendus Chimie 21 (3–4):247–52. doi:10.1016/j.crci.2017.06.002.
  • Yao, Z., X. Zhang, F. Peng, Yu, H., Wang, H., and Yang, J. 2011. A novel carbothermal reduction nitridation route to MoN nanoparticles on CNTs support. Journal of Materials Chemistry 21 (19):6898–902. doi:10.1039/c1jm10833f.
  • Yentekakis, I. V., and F. Dong. 2020. Grand challenges for catalytic remediation in environmental and energy applications toward a cleaner and sustainable future. Frontiers in Environmental Chemistry 1:1–14. doi:10.3389/fenvc.2020.00005.
  • York, A. P. E., J. B. Claridge, A. J. Brungs, S. C. Tsang, and M. L. H. Green. 1997. Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Chemical Communications 1 (1):39–40. doi:10.1039/a605693h.
  • Yusuf, M., A. S. Farooqi, A. A. Al-Kahtani, M. Ubaidullah, M. A. Alam, L. K. Keong, K. Hellgardt, and B. Abdullah. 2021. Syngas production from greenhouse gases using Ni–W bimetallic catalyst via dry methane reforming: Effect of W addition. International Journal of Hydrogen Energy 46 (53):27044–61. doi:10.1016/j.ijhydene.2021.05.186.
  • Zhang, Z. 2020. Energy and environment issues in carbon capture, utilization and storage. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–4. doi:10.1080/15567036.2020.1770899.
  • Zhang, G., J. Liu, Y. Xu, and Y. Sun. 2018. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). International Journal of Hydrogen Energy 43 (32):15030–54. doi:10.1016/j.ijhydene.2018.06.091.
  • Zhang, X., Y. Liu, M. Zhang, T. Yu, B. Chen, Y. Xu, M. Crocker, X. Zhu, Y. Zhu, R. Wang, et al. 2020. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem 6 (12):3312–28. doi:10.1016/j.chempr.2020.09.016.
  • Zhang, Q., K. Long, J. Wang, Zhang, T., Song, Z., and Lin, Q 2017. A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. International Journal of Hydrogen Energy 42 (20):14103–14. doi:10.1016/j.ijhydene.2017.04.090.
  • Zhang, G., Y. Sun, P. Zhao, Y. Xu, A. Su, and J. Qu. 2017. Characteristics of activated carbon modified with alkaline KMnO4 and its performance in catalytic reforming of greenhouse gases CO2/CH4. Journal of CO2 Utilization 20:129–40. doi:10.1016/j.jcou.2017.05.013.
  • Zhang, Q., T. Wu, P. Zhang, R. Qi, R. Huang, X. Song, and L. Gao. 2014. Facile synthesis of hollow hierarchical Ni/γ-al2 O3 nanocomposites for methane dry reforming catalysis. RSC Advances 4 (93):51184–93. doi:10.1039/C4RA08815H.
  • Zhang, Y., S. Zhang, X. Zhang, Qiu, J., Yu, L., and Shi, C. 2015. Ni modified WCx catalysts for methane dry reforming[M]. doi:10.1021/bk-2015-1194.ch008.
  • Zhang, A., A. Zhu, B. Chen, Zhang, S., Au, C., and Shi, C. 2011. In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane. Catalysis Communications 12 (9):803–07. doi:10.1016/j.catcom.2011.01.019.
  • Zhang, X., X. Zhu, L. Lin, Yao, S., Zhang, M., Liu, X., Wang, X., Li, Y., Shi, C., and Ma, D. 2017. Highly dispersed copper over β-Mo2 C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catalysis 7 (1):912–18. doi:10.1021/acscatal.6b02991.
  • Zheng, W., L. Wang, F. Deng, Giles, S. A., Prasad, A. K., Advani, S. G., Yan, Y., and Vlachos, D. G. 2017. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells. Nature Communications 8 (1):418. doi:10.1038/s41467-017-00507-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.